Let ∣ x ∣ < 1 and e be Euler's number and a , b and c be real numbers.
Let m ( x ) = lim n → ∞ ⎣ ⎢ ⎡ ⎝ ⎜ ⎛ ∑ j = 1 n ( n j ) n x n − j ∑ j = 1 n x j ⎠ ⎟ ⎞ ∗ ⎝ ⎜ ⎛ ∑ j = 1 n ( − 1 ) j + 1 x j ∑ j = 1 n ( − 1 ) n − j ( n j ) n x n − j ) ⎠ ⎟ ⎞ ⎦ ⎥ ⎤ and p ( x ) = a x 2 + b x + c and lim x → 0 m ( x ) = lim x → 0 p ( x ) .
If m ( x ) and p ( x ) have a common tangent at x = e − 2 , find a + b + c and express the result to eight decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
lim n → ∞ ∑ j = 1 n ( n j ) n x n − j = ∑ j = 0 n − 1 ( 1 − n j ) n x j = ∑ n = 0 ∞ ( e x ) n = e − x e on ∣ x ∣ < e
⟹ lim n → ∞ ∑ j = 1 n ( n j ) n x n − j ∑ j = 1 n x j = ( 1 − x x ) ( e e − x ) = e ( 1 − x ) x ( e − x ) on ∣ x ∣ < 1
⟹ ∑ n = 0 ∞ ( − 1 ) n ( e x ) n ∑ n = 1 ∞ ( − 1 ) n + 1 x n = ∑ n = 0 ∞ ( e − x ) n − ∑ n = 1 ∞ ( − x ) n = e ( 1 + x ) x ( e + x ) on ∣ x ∣ < 1
⟹ ( ∑ j = 1 n ( − 1 ) j + 1 x j ∑ j = 1 n ( − 1 ) n − j ( n j ) n x n − j ) ) = x ( e + x ) e ( 1 + x ) on ∣ x ∣ < 1
⟹ m ( x ) = ( 1 − x ) ( e + x ) ( e − x ) ( 1 + x )
Let p ( x ) = a x 2 + b x .
lim x → 0 p ( x ) = lim x → 0 m ( x ) = 0 ⟹ c = 1
m ( e − 2 ) = 3 − e 1 = p ( e − 2 ) = ( e − 2 ) 2 a + b ( e − 2 ) + 1 ⟹
( e − 2 ) a + b = 3 − e 1 .
d x d m = 1 + e 2 ( e − 1 ) ( 1 − x ) 2 1 + ( e + x ) 2 e ) and d x d p = 2 a x + b
d x d ( m ( x ) ) ∣ x = e − 2 = 2 ( 3 − e ) 2 ( e − 1 ) e 2 − 3 e + 4 = d x d ( p ( x ) ) ∣ x = e − 2 = 2 ( e − 2 ) a + b ⟹
2 ( e − 2 ) a + b = 2 ( 3 − e ) 2 ( e − 1 ) e 2 − 3 e + 4
and
( e − 2 ) a + b = 3 − e 1 .
Solving the system above we obtain:
a = 2 ( 3 − e ) 2 ( e − 1 ) 3 e − 5 and b = − 2 ( 3 − e ) 2 ( e − 1 ) 5 e 2 − 1 9 e + 1 6 ⟹
a + b = − 2 ( 3 − e ) ( e − 1 ) 2 e 2 − 1 3 e + 1 3 ≈ 7 . 8 0 8 3 0 5 2 0
Note: Using point A : ( e − 2 , 3 − e 1 ) the equation of the common tangent line is y − 3 − e 1 = ( 2 ( 3 − e ) 2 ( e − 1 ) e 2 − 3 e + 4 ) ( x + 2 − e ) .