Tangent Craze

Calculus Level 4

Let n n be a positive integer.

A B \overleftrightarrow{AB} and A B \overleftrightarrow{A^{'}B^{'}} are tangent to the curves y = x 1 2 n y = |x|^\frac{1}{2n} and y = x 2 n y = -x^{2n} at points A , B , A , B A,B,A^{'},B^{'} .

Let A n A_{n} be the area of the trapezoid formed using the four points above.

Find lim n A n \lim_{n \rightarrow \infty} A_{n} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
May 4, 2018

Let f ( x ) = x 2 n f(x) = -x^{2n} and g ( x ) = x 1 2 n g(x) = x^\frac{1}{2n} .

To show y = x y = x is parallel to A B \overleftrightarrow{AB} .

d d x ( f ( x ) ) x = a = 1 a = 1 ( 2 n ) 1 2 n 1 \dfrac{d}{dx}(f(x))|_{x = a} = 1 \implies a = \dfrac{-1}{(2n)^{\frac{1}{2n - 1}}} and d d x ( g ( x ) ) x = b = 1 b = 1 ( 2 n ) 2 n 2 n 1 \dfrac{d}{dx}(g(x))|_{x = b} = 1 \implies b = \dfrac{1}{(2n)^{\frac{2n}{2n - 1}}}

A : ( 1 ( 2 n ) 1 2 n 1 , 1 ( 2 n ) 2 n 2 n 1 ) \implies A: (\dfrac{-1}{(2n)^{\frac{1}{2n - 1}}},\dfrac{-1}{(2n)^{\frac{2n}{2n - 1}}}) and B : ( 1 ( 2 n ) 2 n 2 n 1 , 1 ( 2 n ) 1 2 n 1 ) m A B = 1 A B B: (\dfrac{1}{(2n)^{\frac{2n}{2n - 1}}},\dfrac{1}{(2n)^{\frac{1}{2n - 1}}}) \implies m_{AB} = 1 \implies \overleftrightarrow{AB} is parallel to line y = x y = x

and y = x + 2 n 1 ( 2 n ) 2 n 2 n 1 y = x + \dfrac{2n - 1}{(2n)^{\frac{2n}{2n - 1}}} .

Using the symmetry about the y y axis A : ( 1 ( 2 n ) 1 2 n 1 , 1 ( 2 n ) 2 n 2 n 1 ) \implies A^{'}: (\dfrac{1}{(2n)^{\frac{1}{2n - 1}}},\dfrac{-1}{(2n)^{\frac{2n}{2n - 1}}}) and B : ( 1 ( 2 n ) 2 n 2 n 1 , 1 ( 2 n ) 1 2 n 1 ) B^{'}: (\dfrac{-1}{(2n)^{\frac{2n}{2n - 1}}},\dfrac{1}{(2n)^{\frac{1}{2n - 1}}}) m A B = 1 y = x + 2 n 1 ( 2 n ) 2 n 2 n 1 \implies m_{A^{'}B^{'}} = -1 \implies y = -x + \dfrac{2n - 1}{(2n)^{\frac{2n}{2n - 1}}} .

B B = 2 ( 2 n ) 2 n 2 n 1 , A A = 2 ( 2 n ) 1 2 n 1 BB^{'} = \dfrac{2}{(2n)^{\frac{2n}{2n - 1}}}, AA^{'} = \dfrac{2}{(2n)^{\frac{1}{2n - 1}}} , and P : ( 1 ( 2 n ) 2 n 2 n 1 , 1 ( 2 n ) 2 n 2 n 1 ) P: (\dfrac{-1}{(2n)^{\frac{2n}{2n - 1}}}, \dfrac{-1}{(2n)^{\frac{2n}{2n - 1}}}) \implies

B P = 2 n + 1 ( 2 n ) 2 n 2 n 1 B^{'}P = \dfrac{2n + 1}{(2n)^{\frac{2n}{2n - 1}}}

A n = 1 2 ( A A + B B ) ( B P ) = ( 2 n + 1 ( 2 n ) 2 n 2 n 1 ) 2 \implies A_{n} = \dfrac{1}{2}(AA^{'} + BB^{'})(B^{'}P) = (\dfrac{2n + 1}{(2n)^{\frac{2n}{2n - 1}}})^2

and lim n A n = lim n ( ( 1 2 n ) 1 2 n 1 ( 1 + 1 2 n ) ) 2 = 1 \lim_{n \rightarrow \infty} A_{n} = \lim_{n \rightarrow \infty} ((\dfrac{1}{2n})^{\frac{1}{2n - 1}} (1 + \dfrac{1}{2n}))^2 = \boxed{1} = A T Q R A_{\triangle{TQR}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...