Let be a positive integer.
and are tangent to the curves and at points .
Let be the area of the trapezoid formed using the four points above.
Find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let f ( x ) = − x 2 n and g ( x ) = x 2 n 1 .
To show y = x is parallel to A B .
d x d ( f ( x ) ) ∣ x = a = 1 ⟹ a = ( 2 n ) 2 n − 1 1 − 1 and d x d ( g ( x ) ) ∣ x = b = 1 ⟹ b = ( 2 n ) 2 n − 1 2 n 1
⟹ A : ( ( 2 n ) 2 n − 1 1 − 1 , ( 2 n ) 2 n − 1 2 n − 1 ) and B : ( ( 2 n ) 2 n − 1 2 n 1 , ( 2 n ) 2 n − 1 1 1 ) ⟹ m A B = 1 ⟹ A B is parallel to line y = x
and y = x + ( 2 n ) 2 n − 1 2 n 2 n − 1 .
Using the symmetry about the y axis ⟹ A ′ : ( ( 2 n ) 2 n − 1 1 1 , ( 2 n ) 2 n − 1 2 n − 1 ) and B ′ : ( ( 2 n ) 2 n − 1 2 n − 1 , ( 2 n ) 2 n − 1 1 1 ) ⟹ m A ′ B ′ = − 1 ⟹ y = − x + ( 2 n ) 2 n − 1 2 n 2 n − 1 .
B B ′ = ( 2 n ) 2 n − 1 2 n 2 , A A ′ = ( 2 n ) 2 n − 1 1 2 , and P : ( ( 2 n ) 2 n − 1 2 n − 1 , ( 2 n ) 2 n − 1 2 n − 1 ) ⟹
B ′ P = ( 2 n ) 2 n − 1 2 n 2 n + 1
⟹ A n = 2 1 ( A A ′ + B B ′ ) ( B ′ P ) = ( ( 2 n ) 2 n − 1 2 n 2 n + 1 ) 2
and lim n → ∞ A n = lim n → ∞ ( ( 2 n 1 ) 2 n − 1 1 ( 1 + 2 n 1 ) ) 2 = 1 = A △ T Q R