Common Tangents and Areas.

Level pending

Let n n be a positive integer, f ( x ) = x 1 2 n f(x) = x^{\frac{1}{2n}} and g ( x ) = x 2 n g(x) = -x^{2n}

f ( x ) f(x) and g ( x ) g(x) have a common tangent at points A A and B B respectively.

Let A ( n ) A(n) be the area of the region R R bounded by the tangent line and f ( x ) f(x) and g ( x ) g(x)

Find lim n A ( n ) \lim_{n \rightarrow \infty} A(n) .


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 29, 2019

Let f ( x ) = x 1 2 n f(x) = x^{\frac{1}{2n}} and g ( x ) = x 2 n g(x) = -x^{2n}

From the graph above R ( 0 , 0 ) R y = x ( x 0 , y 0 ) = ( y 0 , x 0 ) R_{(0,0)} \circ R_{y = x} (x_{0},y_{0}) = (-y_{0},-x_{0})

Using A : ( x 0 , y 0 ) A: (x_{0},y_{0}) and B : ( y 0 , x 0 ) B: (-y_{0},-x_{0}) \implies slope m A B = 1 m_{AB} = 1 \implies

f ( x 0 ) = 1 2 n ( 1 x 0 ) 2 n 1 2 n x 0 = ( 1 2 n ) 2 n 2 n 1 y 0 = ( 1 2 n ) 1 2 n 1 f'(x_{0}) = \dfrac{1}{2n}(\dfrac{1}{x_{0}})^{\frac{2n - 1}{2n}} \implies x_{0} = (\dfrac{1}{2n})^{\frac{2n}{2n - 1}} \implies y_{0} = (\dfrac{1}{2n})^{\frac{1}{2n - 1}} \implies

A : ( ( 1 2 n ) 2 n 2 n 1 , ( 1 2 n ) 1 2 n 1 ) A: ((\dfrac{1}{2n})^{\frac{2n}{2n - 1}}, (\dfrac{1}{2n})^{\frac{1}{2n - 1}}) and B : ( ( 1 2 n ) 1 2 n 1 , ( 1 2 n ) 2 n 2 n 1 ) B: (-(\dfrac{1}{2n})^{\frac{1}{2n - 1}}, -(\dfrac{1}{2n})^{\frac{2n}{2n - 1}}) \implies

y = x + ( 2 n 1 ) ( 1 2 n ) 2 n 2 n 1 y = x + (2n - 1) (\dfrac{1}{2n})^{\frac{2n}{2n - 1}}

Let j ( n ) = ( 1 2 n ) 2 n 2 n 1 y = x + ( 2 n 1 ) j ( n ) j(n) = (\dfrac{1}{2n})^{\frac{2n}{2n - 1}} \implies y = x + (2n - 1) j(n)

A 1 ( n ) = 0 j ( n ) ( x + ( 2 n 1 ) j ( n ) x 1 2 n ) d x = \implies A_{1}(n) = \displaystyle\int_{0}^{j(n)} (x + (2n - 1) j(n) - x^{\frac{1}{2n}}) \:\ dx =

x 2 2 + ( 2 n 1 ) j ( n ) x 2 n 2 n + 1 x 2 n + 1 2 n 0 j ( n ) = \dfrac{x^2}{2} + (2n - 1)j(n)x - \dfrac{2n}{2n + 1}x^{\frac{2n + 1}{2n}}|_{0}^{j(n)} =

j ( n ) 2 2 + ( 2 n 1 ) j ( n ) 2 2 n 2 n + 1 j ( n ) 2 n + 1 2 n 0 j ( n ) = \dfrac{j(n)^{2}}{2} + (2n - 1)j(n)^2 - \dfrac{2n}{2n + 1}j(n)^{\frac{2n + 1}{2n}}|_{0}^{j(n)} =

( 4 n 1 2 ) ( 1 2 n ) 4 n 2 n 1 ( 2 n 2 n + 1 ) ( 1 2 n ) 2 n + 1 2 n 1 = (\dfrac{4n - 1}{2})(\dfrac{1}{2n})^{\frac{4n}{2n - 1}} - (\dfrac{2n}{2n + 1})(\dfrac{1}{2n})^{\frac{2n + 1}{2n - 1}} =

( 1 2 n ) 2 n + 1 2 n 1 ( ( 4 n 1 2 ) ( 1 2 n ) 2 n 2 n + 1 ) = (\dfrac{1}{2n})^{\frac{2n + 1}{2n - 1}}((\dfrac{4n - 1}{2})(\dfrac{1}{2n}) - \dfrac{2n}{2n + 1}) =

1 2 ( 1 2 n ) 4 n 2 n 1 ( 2 n 1 2 n + 1 ) \boxed{\dfrac{1}{2}(\dfrac{1}{2n})^{\frac{4n}{2n - 1}}(\dfrac{2n - 1}{2n + 1})}

and

A 2 ( n ) = ( 1 2 n ) 1 2 n 1 0 ( x + ( 2 n 1 ) j ( n ) + x 2 n ) d x = A_{2}(n) = \displaystyle\int_{-(\dfrac{1}{2n})^{\frac{1}{2n - 1}}}^{0} (x + (2n - 1)j(n) + x^{2n}) \:\ dx =

x 2 2 + ( 2 n 1 ) j ( n ) x + 1 2 n + 1 x 2 n + 1 ( 1 2 n ) 1 2 n 1 0 = \dfrac{x^2}{2} + (2n - 1)j(n)x + \dfrac{1}{2n + 1}x^{2n + 1}|_{-(\dfrac{1}{2n})^{\frac{1}{2n - 1}}}^{0} =

1 2 ( 1 2 n ) 2 2 n 1 + ( 2 n 1 ) ( 1 2 n ) 2 n + 1 2 n 1 + ( 1 2 n + 1 ) ( 1 2 n ) 2 n + 1 2 n 1 = -\dfrac{1}{2}(\dfrac{1}{2n})^{\frac{2}{2n - 1}} + (2n - 1)(\dfrac{1}{2n})^{\frac{2n + 1}{2n - 1}} + (\dfrac{1}{2n + 1})(\dfrac{1}{2n})^{\frac{2n + 1}{2n - 1}} =

( 1 2 n ) 2 2 n 1 ( 1 2 + ( 2 n 1 ) ( 1 2 n ) + ( 1 2 n + 1 ) ( 1 2 n ) ) = (\dfrac{1}{2n})^{\frac{2}{2n - 1}}(-\dfrac{1}{2} + (2n - 1)(\dfrac{1}{2n}) + (\dfrac{1}{2n + 1})(\dfrac{1}{2n})) =

1 2 ( 1 2 n ) 2 2 n 1 ( 2 n 1 2 n + 1 ) \boxed{\dfrac{1}{2}(\dfrac{1}{2n})^{\frac{2}{2n - 1}}(\dfrac{2n - 1}{2n + 1})}

A ( n ) = A 1 ( n ) + A 2 ( n ) = ( 4 n 2 + 1 ) ( 2 n 1 ) 2 ( 2 n + 1 ) ( 1 2 n ) 4 n 2 n 1 = ( 4 n 2 + 1 ) ( 2 n 1 ) 2 ( 2 n + 1 ) ( 1 4 n 2 ) 2 n 2 n 1 \implies A(n) = A_{1}(n) + A_{2}(n) = \dfrac{(4n^2 + 1)(2n - 1)}{2(2n + 1)}(\dfrac{1}{2n})^{\frac{4n}{2n - 1}} = \boxed{\dfrac{(4n^2 + 1)(2n - 1)}{2(2n + 1)}(\dfrac{1}{4n^2})^{\frac{2n}{2n - 1}}}

lim n A ( n ) = 1 2 lim n 2 n 1 2 n + 1 \lim_{n \rightarrow \infty} A(n) = \dfrac{1}{2}\lim_{n \rightarrow \infty} \dfrac{2n - 1}{2n + 1} * lim n 4 n 2 + 1 ( 4 n 2 ) ( 4 n 2 ) 1 2 n 1 = \lim_{n \rightarrow \infty} \dfrac{4n^2 + 1}{(4n^2)(4n^2)^{\frac{1}{2n - 1}}} =

1 2 lim n ( 1 + 1 4 n 2 ) lim n ( 1 4 n 2 ) 1 2 n 1 = 1 2 lim n ( 1 4 n 2 ) 1 2 n 1 \dfrac{1}{2}\lim_{n \rightarrow \infty} (1 + \dfrac{1}{4n^2}) * \lim_{n \rightarrow \infty} (\dfrac{1}{4n^2})^{\frac{1}{2n - 1}} = \dfrac{1}{2}\lim_{n \rightarrow \infty} (\dfrac{1}{4n^2})^{\frac{1}{2n - 1}}

and

lim n ( 1 4 n 2 ) 1 2 n 1 = \lim_{n \rightarrow \infty} (\dfrac{1}{4n^2})^{\frac{1}{2n - 1}} = lim n e ( ln ( 1 4 n 2 ) 2 n 1 ) = \lim_{n \rightarrow \infty} e^{(\dfrac{\ln(\frac{1}{4n^2})}{2n - 1})} =

e lim n ( ln ( 1 4 n 2 ) 2 n 1 ) = e^{\lim_{n \rightarrow \infty} (\dfrac{\ln(\frac{1}{4n^2})}{2n - 1})} = e lim n ( 1 n ) = e 0 = 1 e^{\lim_{n \rightarrow \infty} (-\dfrac{1}{n})} = e^{0} = 1

lim n A ( n ) = 1 2 \implies \boxed{\lim_{n \rightarrow \infty} A(n) = \dfrac{1}{2}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...