Common Tangents, Areas, Logs and Limits.

Level pending

Let n n be a positive integer and

f ( x ) = x 2 n + 1 \large f(x) = x^{2n + 1} and g ( x ) = { log b ( x ) i f x > 0 log b ( x ) i f x < 0 g(x) = \large \begin{cases} \log_{b}(x) \:\ if \:\ x > 0 \\ -\log_{b}(-x) \:\ if \:\ x < 0 \end{cases}

f ( x ) f(x) and g ( x ) g(x) have common tangents at points A A and A A' .

If A n A_{n} is the area of the region bounded by f ( x ) f(x) and the line A A AA' , find lim n A n \lim_{n \rightarrow \infty} A_{n} to seven decimal places.


The answer is 2.7182818.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Dec 14, 2018

Let f ( x ) = x 2 n + 1 f(x) = x^{2n + 1} and g ( x ) = log b ( x ) = ln ( x ) ln ( b ) g(x) = \log_{b}(x) = \dfrac{\ln(x)}{\ln(b)} for x > 0 x > 0

f ( a ) = ( 2 n + 1 ) a 2 n = g ( a ) = 1 a ln ( b ) \implies f'(a) = (2n + 1)a^{2n} = g'(a) = \dfrac{1}{a\ln(b)} \implies a 2 n + 1 = 1 ( 2 n + 1 ) ln ( b ) a = ( 1 ( 2 n + 1 ) ln ( b ) ) 1 2 n + 1 a^{2n + 1} = \dfrac{1}{(2n + 1)\ln(b)} \implies a = (\dfrac{1}{(2n + 1)\ln(b)})^{\frac{1}{2n + 1}}

and

a 2 n + 1 = ln ( a ) ln ( b ) 1 ( 2 n + 1 ) ln ( b ) = ln ( 1 ( 2 n + 1 ) ln ( b ) ) ( 2 n + 1 ) ln ( b ) ln ( 1 ( 2 n + 1 ) ln ( b ) ) = 1 ln ( b ) = 1 2 n + 1 ) e a^{2n + 1} = \dfrac{\ln(a)}{\ln(b)} \implies \dfrac{1}{(2n + 1)\ln(b)} = \dfrac{\ln(\dfrac{1}{(2n + 1)\ln(b)})}{(2n + 1)\ln(b)} \implies \ln(\dfrac{1}{(2n + 1)\ln(b)}) = 1 \implies \ln(b) = \dfrac{1}{2n + 1)e} \implies

b = e 1 ( 2 n + 1 ) e a = e 1 2 n + 1 a 2 n + 1 = e \large b = e^{\frac{1}{(2n + 1)e}} \implies a = e^{\frac{1}{2n + 1}} \implies a^{2n + 1} = e

A : ( e 1 2 n + 1 , e ) \implies \large A:(e^{\frac{1}{2n + 1}}, e) and using the symmetry about the origin we have A : ( e 1 2 n + 1 , e ) \large A':(-e^{\frac{1}{2n + 1}}, -e)

m A A = e 2 n 2 n + 1 y = e 2 n 2 n + 1 x \implies m_{AA'} = \large e^{\frac{2n}{2n + 1}} \implies y = e^{\frac{2n}{2n + 1}}x

A n = 2 0 e 1 2 n + 1 ( e 2 n 2 n + 1 x x 2 n + 1 ) d x = ( n n + 1 ) e 2 n + 2 2 n + 1 \implies A_{n} = \large 2\displaystyle\int_{0}^{e^{\frac{1}{2n + 1}}} (e^{\frac{2n}{2n + 1}}x - x^{2n + 1}) \:\ dx = (\dfrac{n}{n + 1})e^{\frac{2n + 2}{2n + 1}}

lim n A n = e lim n ( 1 1 n + 1 ) e 1 2 n + 1 = e \implies \large \lim_{n \rightarrow \infty} A_{n} = e\lim_{n \rightarrow \infty} (1 - \dfrac{1}{n + 1})e^{\frac{1}{2n + 1}} = e 2.7182818 \approx \boxed{2.7182818} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...