Tangent Problem 2

Calculus Level pending

If A B \overleftrightarrow{AB} and A B \overleftrightarrow{A^{'}B^{'}} are tangent to the curves y = x 1 / 4 y = |x|^{1/4} and y = x 4 y = -x^4 at points A , B , A , B A,B,A^{'},B^{'} and the area A A B B A A_{AB^{'}BA^{'}} of the trapezoid above can be expressed as A A B B A = ( λ α α α α β ) α A_{AB^{'}BA^{'}} = (\dfrac{\lambda}{\alpha^{\alpha} * \alpha^{\frac{\alpha}{\beta}}})^{\alpha} , where α , β \alpha,\beta and λ \lambda are coprime positive integers, find α + β + λ \alpha + \beta + \lambda .

Refer to similiar problem


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Apr 27, 2018

Using the symmetry about the y y axis let f ( x ) = x 4 { f(x) = -x^4 } and g ( x ) = x 1 / 4 { g(x) = x^{1/4} \implies }

d d x ( f ( x ) ) x = a = 4 a 3 \dfrac{d}{dx}(f(x))|_{x = a} = -4a^3 and d d x ( g ( x ) ) x = b = 1 4 b 3 4 \dfrac{d}{dx}(g(x))|_{x = b} = \dfrac{1}{4b^{\frac{3}{4}}} \implies 4 a 3 = 1 4 b 3 4 a = 1 1 6 1 3 b 1 4 -4a^3 = \dfrac{1}{4b^{\frac{3}{4}}} \implies a = \dfrac{-1}{16^{\frac{1}{3}}b^\frac{1}{4}}

Using A : ( a , a 4 ) = ( 1 1 6 1 3 b 1 4 , 1 1 6 4 3 b ) A: (a,-a^4) = (\dfrac{-1}{16^{\frac{1}{3}}b^\frac{1}{4}},\dfrac{-1}{16^{\frac{4}{3}}b}) and B : ( b , b 1 4 ) B: (b,b^{\frac{1}{4}}) \implies

The slope m = 1 6 4 3 b 5 4 + 1 ( 16 b 3 4 ) ( 1 6 1 3 b 5 4 + 1 ) = 1 4 b 3 4 m = \dfrac{16^{\frac{4}{3}} b^{\frac{5}{4}} + 1}{(16b^{\frac{3}{4}})(16^{\frac{1}{3}} b^{\frac{5}{4}} + 1)} = \dfrac{1}{4b^{\frac{3}{4}}} \implies 4 8 3 b 5 4 + 1 = 4 5 3 b 5 4 + 4 4^{\frac{8}{3}}b^{\frac{5}{4}} + 1 = 4^{\frac{5}{3}}b^{\frac{5}{4}} + 4 \implies 4 5 3 b 5 4 = 1 b = 1 4 4 3 a = 1 4 1 3 4^{\frac{5}{3}}b^{\frac{5}{4}} = 1 \implies b = \dfrac{1}{4^{\frac{4}{3}}} \implies a = \dfrac{-1}{4^{\frac{1}{3}}}

A : ( 1 4 1 3 , 1 4 4 3 ) \implies A: (\dfrac{-1}{4^{\frac{1}{3}}}, \dfrac{-1}{4^{\frac{4}{3}}}) and B : ( 1 4 4 3 , 1 4 1 3 ) B: (\dfrac{1}{4^{\frac{4}{3}}},\dfrac{1}{4^{\frac{1}{3}}})

Using the symmetry about the y y axis A : ( 1 4 1 3 , 1 4 4 3 ) \implies A^{'}: (\dfrac{1}{4^{\frac{1}{3}}}, \dfrac{-1}{4^{\frac{4}{3}}}) and B : ( 1 4 4 3 , 1 4 1 3 ) B^{'}: (\dfrac{-1}{4^{\frac{4}{3}}},\dfrac{1}{4^{\frac{1}{3}}}) \implies

B B = 2 4 4 3 , A A = 2 4 1 3 BB^{'} = \dfrac{2}{4^{\frac{4}{3}}}, AA^{'} = \dfrac{2}{4^{\frac{1}{3}}} and using point P : ( 1 4 4 3 , 1 4 4 3 ) P: (\dfrac{-1}{4^{\frac{4}{3}}},\dfrac{-1}{4^{\frac{4}{3}}}) the height h h of the given trapezoid is h = B P = 5 4 4 3 A A B B A = ( 5 4 4 3 ) 2 = h = B^{'}P = \dfrac{5}{4^{\frac{4}{3}}} \implies A_{AB^{'}BA^{'}} = (\dfrac{5}{4^{\frac{4}{3}}})^2 = ( 5 2 2 2 2 3 ) 2 = ( λ α α α α β ) α α + β + λ = 10 (\dfrac{5}{2^2 * 2^{\frac{2}{3}}})^2 = (\dfrac{\lambda}{\alpha^{\alpha} * \alpha^{\frac{\alpha}{\beta}}})^{\alpha} \implies \alpha + \beta + \lambda = \boxed{10} .

In addition:

Using points A A and B m A B = 1 y = x + 3 4 4 3 B \implies m_{AB} = 1 \implies y = x + \dfrac{3}{4^{\frac{4}{3}}}

Using points A A^{'} and B m A B = 1 y = x + 3 4 4 3 B^{'} \implies m_{A^{'}B^{'}} = -1 \implies y = -x + \dfrac{3}{4^{\frac{4}{3}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...