Compare a a and b b

Algebra Level 5

a = 1 1 2 + 1 3 1 4 + 1 5 1 6 + + 1 1999 1 2000 b = 1 1000 + 1 1001 + 1 1002 + + 1 2000 \begin{aligned} a&=& 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \cdots+ \frac{1}{1999}-\frac{1}{2000} \\ b&= &\frac{1}{1000} + \frac{1}{1001} + \frac{1}{1002} + \cdots + \frac{1}{2000} \end{aligned}

Which of the following is true?

a > b a > b a < b a < b a = b a = b a a and b b can't be compared

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Sep 10, 2014

a = 1 1 2 + 1 3 1 4 + 1 5 1 6 . . . + 1 1999 1 2000 a = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} ... + \frac{1}{1999} - \frac{1}{2000}

= 1 + ( 1 2 1 ) + 1 3 + ( 1 4 1 2 ) + 1 5 + ( 1 6 1 3 ) . . . + 1 1999 + ( 1 2000 1 1000 ) \quad = 1 + (\frac{1}{2} - 1) + \frac{1}{3} + (\frac{1}{4} - \frac{1}{2} ) + \frac{1}{5} + (\frac{1}{6} - \frac{1}{3} ) ... + \frac{1}{1999 }+ (\frac{1}{2000} - \frac{1}{1000} )

= 1 + 1 2 + 1 3 . . . + 1 2000 1 1 2 1 3 . . . 1 1000 \quad = 1 + \frac{1}{2} + \frac{1}{3} ... + \frac{1}{2000} - 1 - \frac{1}{2} - \frac{1}{3} ... - \frac{1}{1000}

a = n = 1 2000 1 n n = 1 1000 1 n \Rightarrow a =\sum _{ n=1 }^{ 2000 }{ \frac { 1 }{ n } } - \sum _{ n=1 }^{ 1000 }{ \frac { 1 }{ n } }

b = 1 1000 + 1 1001 + 1 1002 . . . + 1 2000 b = \frac{1}{1000} + \frac{1}{1001} + \frac{1}{1002} ... + \frac{1}{2000}

b = n = 1 2000 1 n n = 1 999 1 n \Rightarrow b =\sum _{ n=1 }^{ 2000 }{ \frac { 1 }{ n } } - \sum _{ n=1 }^{ 999 }{ \frac { 1 }{ n } }

It is noticed that b a = 1 1000 a < b b - a = \frac{1}{1000} \quad \Rightarrow \boxed { a < b }

Excellent!

Lu Chee Ket - 5 years, 6 months ago

Love this solution!!!

B.S.Bharath Sai Guhan - 6 years, 8 months ago

careless.. Is this valid?

Let c = 1 + 1 2 + 1 3 + . . . + 1 1000 c = 1 + \frac{1}{2} +\frac{1}{3} + ... + \frac{1}{1000}

It is exactly that a + b + c 1 1000 = 2 ( 1 + 1 3 + 1 1 5 + . . . + 1 1999 ) a+b+c - \frac{1}{1000} = 2(1 + \frac{1}{3} + 1\frac{1}{5} + ... + \frac{1}{1999}) a + b + c 1 1000 = 2 ( b + c 1 1000 1 2 1 4 . . . 1 2000 ) a+b+c- \frac{1}{1000} = 2(b+c - \frac{1}{1000} - \frac{1}{2} - \frac{1}{4} - ... - \frac{1}{2000}) a + b + c 1 1000 = 2 ( b + c 1 1000 1 2 ( 1 + . . . + 1 1000 ) a+b+c - \frac{1}{1000} = 2(b+c - \frac{1}{1000} -\frac{1}{2} (1 + ... + \frac{1}{1000}) a + b + c 1 1000 = 2 ( b + c 1 1000 c 2 ) a+b+c - \frac{1}{1000} = 2(b+c - \frac{1}{1000} - \frac{c}{2}) a + b + c 1 1000 = 2 b + c 2 1000 a+b+c - \frac{1}{1000} = 2b+c-\frac{2}{1000} a + b + c = 2 b + c 1 1000 a+b+c = 2b+c- \frac{1}{1000} a = b 1 1000 < b a=b-\frac{1}{1000} < b

It concludes that a < b a<b

I made a very stupid mistake during subtracting

Figel Ilham - 5 years, 6 months ago

Beautiful solution

Pranav Rao - 5 years, 6 months ago

Did the same way.

Anupam Nayak - 5 years, 5 months ago

I missed the term 1 1000 \frac{1}{1000} in B. >__<

Jared Low - 6 years, 5 months ago
AviRal VerMa
Sep 9, 2014

a= 1-1/2+1/3.....-1/2000

a= (1+1/3+......1/1999) - ( 1/2 +.......+1/2000)

a=(1 + 1/2 +1/3.......+1/2000) -( 1/2 +.......+1/2000)- ( 1/2 +.......+1/2000)

a= (1 + 1/2 +1/3.......+1/2000) -2 x ( 1/2 +.......+1/2000)

a= (1 + 1/2 +1/3.......+1/2000) -2 /2 ( 1/1 +.......+1/1000) [taking two common from second bracket]

a=(1 + 1/2 +1/3.......+1/2000) - ( 1/1 +.......+1/1000)

a=1/1000 +1/1001 .....1/2000=b

Actually, a a is equal to 1 1001 + 1 1002 + 1 1003 + + 1 2000 . \frac{1}{1001} + \frac{1}{1002} + \frac{1}{1003} + \dots + \frac{1}{2000}. If this is the intended expression for b b , then the problem should be fixed.

Jon Haussmann - 6 years, 9 months ago

Log in to reply

Thanks for pointing that out. I've updated the answer to a < b a < b , given the phrasing.

In future, if you spot any errors with a problem, you can “report” it by selecting the “dot dot dot” menu in the lower right corner. You will get a more timely response that way.

Calvin Lin Staff - 6 years, 9 months ago

@Adrian Neacșu I've updated the expression of a a to make the 2nd last term 1 1999 \frac{1}{1999} instead of 1 2000 \frac{1}{ 2000} .

Calvin Lin Staff - 6 years, 9 months ago

Log in to reply

Thanks but why does it say that a < b a < b

Adrian Neacșu - 6 years, 9 months ago

Log in to reply

See Jon's comment above.

Calvin Lin Staff - 6 years, 9 months ago

Ouch pressed the wrong button but i have the same solution as yours :)

Rindell Mabunga - 6 years, 9 months ago

In order to b a = 1 1000 b-a=\frac{1}{1000} , the definition of b should be changed to b = 1 1000 + 1 1001 + 1 1002 + . . . + 1 2000 b=\frac { 1 }{ 1000 } +\frac { 1 }{ 1001 } +\frac { 1 }{ 1002 } +...+\frac { 1 }{ 2000 } .

João Henrique Franco - 6 years, 9 months ago

I interpreted b b as: 1 1000 + 1 1001 + 1 1003 + 1 1006 . . . \frac { 1 }{ 1000 } +\frac { 1 }{ 1001 } +\frac { 1 }{ 1003 } +\frac { 1 }{ 1006 } ... Due to the problem showing b = 1 1000 + 1 1001 + 1 1003 . . . b=\frac { 1 }{ 1000 } +\frac { 1 }{ 1001 } +\frac { 1 }{ 1003 } ... instead of n = 0 1000 1 1000 + n \sum _{ n=0 }^{ 1000 }{ \frac { 1 }{ 1000+n } }

I feel this is unfair. Any thoughts?

Julian Poon - 6 years, 8 months ago

Log in to reply

Thanks for pointing it out. I have updated the phrasing of the problem.

@Adrian Neacșu Please take care when you write up a problem. Review it carefully especially if several people have submitted a dispute.

Calvin Lin Staff - 6 years, 8 months ago

Any body having a rational mind can do it without using pen and paper ! is't it easy and fun ? :)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...