Compare and Predict

Algebra Level 4

Let f f be a function with domain R \mathbb{R} .

If f ( x + 2 ) ( 1 f ( x ) ) = 1 + f ( x ) f(x+2)\big(1-f(x)\big)=1+f(x) and f ( 1 ) = 2016 f(1)=2016 , find the value of f ( 2017 ) f(2017) .


Notation: R \mathbb{R} denotes the set of real numbers .


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jessica Wang
Jan 8, 2017

f ( x + 2 ) ( 1 f ( x ) ) = 1 + f ( x ) f(x+2)(1-f(x))=1+f(x) , by algebraic manipulation we get:

( 1 ) . (1). f ( x + 2 ) = 1 + f ( x ) 1 f ( x ) ; f(x+2)=\frac{1+f(x)}{1-f(x)};

( 2 ) . (2). f ( x ) = f ( x + 2 ) 1 f ( x + 2 ) + 1 . f(x)=\frac{f(x+2)-1}{f(x+2)+1}.

  • From ( 1 ) (1) :

f ( x + 4 ) = 1 + f ( x + 2 ) 1 f ( x + 2 ) = 1 + 1 + f ( x ) 1 f ( x ) 1 1 + f ( x ) 1 f ( x ) = ( 2 1 f ( x ) ) ( 2 f ( x ) 1 f ( x ) ) = 1 f ( x ) . \begin{aligned} f(x+4) & = \frac{1+f(x+2)}{1-f(x+2)} \\ & = \frac{1+\frac{1+f(x)}{1-f(x)}}{1-\frac{1+f(x)}{1-f(x)}} \\ & = \frac{\left ( \frac{2}{1-f(x)} \right )}{\left ( \frac{-2f(x)}{1-f(x)} \right )} \\ & =-\frac{1}{f(x)}. \end{aligned}

  • From ( 2 ) (2) :

f ( x 4 ) = f ( x 2 ) 1 f ( x 2 ) + 1 = f ( x ) 1 f ( x ) + 1 1 f ( x ) 1 f ( x ) + 1 + 1 = ( 2 f ( x ) + 1 ) ( 2 f ( x ) f ( x ) + 1 ) = 1 f ( x ) . \begin{aligned} f(x-4) & =\frac{f(x-2)-1}{f(x-2)+1} \\ & =\frac{\frac{f(x)-1}{f(x)+1}-1}{\frac{f(x)-1}{f(x)+1}+1} \\ & =\frac{\left ( \frac{-2}{f(x)+1} \right )}{\left( \frac{2f(x)}{f(x)+1} \right)} \\ & =-\frac{1}{f(x)}. \end{aligned}

Therefore f ( x + 4 ) = f ( x 4 ) , f(x+4)=f(x-4), f ( x + 8 ) = f ( x ) . \Rightarrow f(x+8)=f(x).

Thus, f ( 2017 ) = f ( 252 × 8 + 1 ) = f ( 1 ) = 2016 . f(2017)=f(252 \times 8 +1)=f(1)= \boxed{2016}.

f ( x + 2 ) ( 1 f ( x ) ) = 1 + f ( x ) f ( x + 2 ) = 1 + f ( x ) 1 f ( x ) f ( x + 4 ) = 1 + f ( x + 2 ) 1 f ( x + 2 ) = 1 + 1 + f ( x ) 1 f ( x ) 1 1 + f ( x ) 1 f ( x ) = 1 f ( x ) f ( x + 8 ) = 1 f ( x + 4 ) = 1 1 f ( x ) = f ( x ) \begin{aligned} f(x+2)(1-f(x)) & = 1+f(x) \\ f(x+2) & = \frac {1+f(x)}{1-f(x)} \\ f(x+4) & = \frac {1+f(x+2)}{1-f(x+2)} = \frac {1+\frac {1+f(x)}{1-f(x)}}{1-\frac {1+f(x)}{1-f(x)}} = - \frac 1{f(x)} \\ f(x+8) & = - \frac 1{f(x+4)} = - \frac 1{-\frac 1{f(x)}} = f(x) \end{aligned}

f ( x + 8 ) = f ( x ) \implies f(x+8) = f(x) , that is a f ( x ) f(x) is function with a period 8, therefore, f ( 2017 ) = f ( 2017 mod 8 ) = f ( 1 ) = 2016 f(2017) = f(2017 \text{ mod }8) = f(1) = \boxed{2016} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...