Let f be a function with domain R .
If f ( x + 2 ) ( 1 − f ( x ) ) = 1 + f ( x ) and f ( 1 ) = 2 0 1 6 , find the value of f ( 2 0 1 7 ) .
Notation:
R
denotes the
set
of
real numbers
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
f ( x + 2 ) ( 1 − f ( x ) ) f ( x + 2 ) f ( x + 4 ) f ( x + 8 ) = 1 + f ( x ) = 1 − f ( x ) 1 + f ( x ) = 1 − f ( x + 2 ) 1 + f ( x + 2 ) = 1 − 1 − f ( x ) 1 + f ( x ) 1 + 1 − f ( x ) 1 + f ( x ) = − f ( x ) 1 = − f ( x + 4 ) 1 = − − f ( x ) 1 1 = f ( x )
⟹ f ( x + 8 ) = f ( x ) , that is a f ( x ) is function with a period 8, therefore, f ( 2 0 1 7 ) = f ( 2 0 1 7 mod 8 ) = f ( 1 ) = 2 0 1 6 .
Problem Loading...
Note Loading...
Set Loading...
f ( x + 2 ) ( 1 − f ( x ) ) = 1 + f ( x ) , by algebraic manipulation we get:
( 1 ) . f ( x + 2 ) = 1 − f ( x ) 1 + f ( x ) ;
( 2 ) . f ( x ) = f ( x + 2 ) + 1 f ( x + 2 ) − 1 .
f ( x + 4 ) = 1 − f ( x + 2 ) 1 + f ( x + 2 ) = 1 − 1 − f ( x ) 1 + f ( x ) 1 + 1 − f ( x ) 1 + f ( x ) = ( 1 − f ( x ) − 2 f ( x ) ) ( 1 − f ( x ) 2 ) = − f ( x ) 1 .
f ( x − 4 ) = f ( x − 2 ) + 1 f ( x − 2 ) − 1 = f ( x ) + 1 f ( x ) − 1 + 1 f ( x ) + 1 f ( x ) − 1 − 1 = ( f ( x ) + 1 2 f ( x ) ) ( f ( x ) + 1 − 2 ) = − f ( x ) 1 .
Therefore f ( x + 4 ) = f ( x − 4 ) , ⇒ f ( x + 8 ) = f ( x ) .
Thus, f ( 2 0 1 7 ) = f ( 2 5 2 × 8 + 1 ) = f ( 1 ) = 2 0 1 6 .