Compare Infinite Sums 2

Calculus Level 3

Which is larger?

A. \begin{aligned} \sum_{\substack{n>1\\m>1}}^{\infty} \frac{1}{n^{m}} \end{aligned}

B. \begin{aligned} \sum_{\substack{n>1\\m>1}}^{\infty} \frac{1}{n^{m}-1} \end{aligned}

Note:

  • In the above infinite series, n n and m m are positive integers greater than 1.
  • Double counting IS allowed in the first infinite series, i.e. if n m = m n n^{m}=m^{n} , then both 1 n m \frac{1}{n^{m}} and 1 m n \frac{1}{m^{n}} appear in the series. For example, since 2 4 = 4 2 2^{4}=4^{2} , you would count 1 2 4 = 1 4 2 = 1 16 \frac{1}{2^{4}}=\frac{1}{4^{2}}=\frac{1}{16} twice.
  • Double counting IS NOT allowed in the second infinite series, i.e. if n m = m n n^{m}=m^{n} , then only one of 1 n m 1 \frac{1}{n^{m}-1} and 1 m n 1 \frac{1}{m^{n}-1} appear in the series. For example, since 2 4 = 4 2 2^{4}=4^{2} , you would only count 1 2 4 1 = 1 4 2 1 = 1 15 \frac{1}{2^{4}-1}=\frac{1}{4^{2}-1}=\frac{1}{15} once .
Equal B A

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Joshua Lowrance
Oct 8, 2018

(I use the fact that n = 1 a n = 1 a 1 {\displaystyle \sum_{n=1}^{\infty} a^{n} = \frac{1}{a-1}} )

A.

\begin{aligned} \sum_{\substack{n>1\\ m>1}}^{\infty} \frac{1}{n^{m}} &=(\frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots) + (\frac{1}{3^{2}} + \frac{1}{3^{3}} + \frac{1}{3^{4}} + \cdots) + (\frac{1}{4^{2}} + \frac{1}{4^{3}} + \frac{1}{4^{4}} + \cdots) +\cdots \\ &=(\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots) - \frac{1}{2} + (\frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \frac{1}{3^{4}} + \cdots) - \frac{1}{3} + (\frac{1}{4} + \frac{1}{4^{2}} + \frac{1}{4^{3}} + \frac{1}{4^{4}} + \cdots) - \frac{1}{4}+\cdots \\\\ &=1-\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \cdots \\\\\\ &=1 \\\\\\\\ \end{aligned}

B.

\begin{aligned} \sum_{\substack{n>1\\m>1}}^{\infty} \frac{1}{n^{m}-1} &=\frac{1}{2^{2}-1}+\frac{1}{2^{3}-1}+\frac{1}{3^{2}-1}+\frac{1}{2^{4}-1}+\cdots \\ &=\frac{1}{3}+\frac{1}{7}+\frac{1}{8}+\frac{1}{15}+\cdots \\\\ \end{aligned}

On a slightly different note,

S 1 = 1 1 + 1 2 + 1 3 + 1 4 + 1 5 + = 1 1 + ( 1 2 + 1 4 + 1 8 + ) + ( 1 3 + 1 9 + 1 27 + ) + ( 1 5 + 1 25 + 1 125 + ) + \begin{aligned} S_{1} &=\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots \\ &=\frac{1}{1} + (\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots) + (\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots) + (\frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \cdots) + \cdots \\\\ \end{aligned}

We would leave out every 1 n m + 1 n m 2 + 1 n m 3 + \frac{1}{n^{m}} + \frac{1}{n^{m^{2}}} + \frac{1}{n^{m^{3}}} + \cdots because we already covered all those terms in 1 n + 1 n 2 + 1 n 3 + \frac{1}{n} + \frac{1}{n^{2}} + \frac{1}{n^{3}} + \cdots . For instance, we would leave out 1 4 + 1 16 + 1 64 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \cdots because 1 2 + 1 4 + 1 8 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots already covers all those terms, and we don't want to repeat terms. This way, we cover every term once, and only once.

S 1 = 1 1 + ( 1 2 + 1 4 + 1 8 + ) + ( 1 3 + 1 9 + 1 27 + ) + ( 1 4 + 1 16 + 1 64 + ) + ( 1 5 + 1 25 + 1 125 + ) + ( 1 4 + 1 16 + 1 64 + ) ( 1 8 + 1 64 + 1 256 + ) ( 1 9 + 1 81 + 1 729 + ) ( 1 16 + 1 256 + 1 4096 + ) = 1 1 + 1 1 + 1 2 + 1 3 + 1 4 + 1 3 1 7 1 8 1 15 = 1 1 + S 1 1 3 1 7 1 8 1 15 \begin{aligned} S_{1} &=\frac{1}{1} + (\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots) + (\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots) + (\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \cdots) + (\frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \cdots) + \cdots - (\frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \cdots) - (\frac{1}{8} + \frac{1}{64} + \frac{1}{256} + \cdots) - (\frac{1}{9} + \frac{1}{81} + \frac{1}{729} + \cdots) - (\frac{1}{16} + \frac{1}{256} + \frac{1}{4096} + \cdots) - \cdots \\ &=\frac{1}{1} + \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots - \frac{1}{3} - \frac{1}{7} - \frac{1}{8} - \frac{1}{15} - \cdots \\\\ &=\frac{1}{1} + S_{1} - \frac{1}{3} - \frac{1}{7} - \frac{1}{8} - \frac{1}{15} - \cdots \\\\\\ \end{aligned}

0 = 1 1 3 1 7 1 8 1 15 0 = 1 - \frac{1}{3} - \frac{1}{7} - \frac{1}{8} - \frac{1}{15} - \cdots

1 3 + 1 7 + 1 8 + 1 15 + = 1 \frac{1}{3} + \frac{1}{7} + \frac{1}{8} + \frac{1}{15} + \cdots = 1

Therefore, A = B = 1.

But in the proof of your second infinite sum, you have started of with S-1 which is actually undefined....!!!!

Aaghaz Mahajan - 2 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...