Which is larger?
A. \begin{aligned} \sum_{\substack{n>1\\m>1}}^{\infty} \frac{1}{n^{m}} \end{aligned}
B. \begin{aligned} \sum_{\substack{n>1\\m>1}}^{\infty} \frac{1}{n^{m}-1} \end{aligned}
Note:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
But in the proof of your second infinite sum, you have started of with S-1 which is actually undefined....!!!!
Problem Loading...
Note Loading...
Set Loading...
(I use the fact that n = 1 ∑ ∞ a n = a − 1 1 )
A.
\begin{aligned} \sum_{\substack{n>1\\ m>1}}^{\infty} \frac{1}{n^{m}} &=(\frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots) + (\frac{1}{3^{2}} + \frac{1}{3^{3}} + \frac{1}{3^{4}} + \cdots) + (\frac{1}{4^{2}} + \frac{1}{4^{3}} + \frac{1}{4^{4}} + \cdots) +\cdots \\ &=(\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots) - \frac{1}{2} + (\frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \frac{1}{3^{4}} + \cdots) - \frac{1}{3} + (\frac{1}{4} + \frac{1}{4^{2}} + \frac{1}{4^{3}} + \frac{1}{4^{4}} + \cdots) - \frac{1}{4}+\cdots \\\\ &=1-\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \cdots \\\\\\ &=1 \\\\\\\\ \end{aligned}
B.
\begin{aligned} \sum_{\substack{n>1\\m>1}}^{\infty} \frac{1}{n^{m}-1} &=\frac{1}{2^{2}-1}+\frac{1}{2^{3}-1}+\frac{1}{3^{2}-1}+\frac{1}{2^{4}-1}+\cdots \\ &=\frac{1}{3}+\frac{1}{7}+\frac{1}{8}+\frac{1}{15}+\cdots \\\\ \end{aligned}
On a slightly different note,
S 1 = 1 1 + 2 1 + 3 1 + 4 1 + 5 1 + ⋯ = 1 1 + ( 2 1 + 4 1 + 8 1 + ⋯ ) + ( 3 1 + 9 1 + 2 7 1 + ⋯ ) + ( 5 1 + 2 5 1 + 1 2 5 1 + ⋯ ) + ⋯
We would leave out every n m 1 + n m 2 1 + n m 3 1 + ⋯ because we already covered all those terms in n 1 + n 2 1 + n 3 1 + ⋯ . For instance, we would leave out 4 1 + 1 6 1 + 6 4 1 + ⋯ because 2 1 + 4 1 + 8 1 + ⋯ already covers all those terms, and we don't want to repeat terms. This way, we cover every term once, and only once.
S 1 = 1 1 + ( 2 1 + 4 1 + 8 1 + ⋯ ) + ( 3 1 + 9 1 + 2 7 1 + ⋯ ) + ( 4 1 + 1 6 1 + 6 4 1 + ⋯ ) + ( 5 1 + 2 5 1 + 1 2 5 1 + ⋯ ) + ⋯ − ( 4 1 + 1 6 1 + 6 4 1 + ⋯ ) − ( 8 1 + 6 4 1 + 2 5 6 1 + ⋯ ) − ( 9 1 + 8 1 1 + 7 2 9 1 + ⋯ ) − ( 1 6 1 + 2 5 6 1 + 4 0 9 6 1 + ⋯ ) − ⋯ = 1 1 + 1 1 + 2 1 + 3 1 + 4 1 + ⋯ − 3 1 − 7 1 − 8 1 − 1 5 1 − ⋯ = 1 1 + S 1 − 3 1 − 7 1 − 8 1 − 1 5 1 − ⋯
0 = 1 − 3 1 − 7 1 − 8 1 − 1 5 1 − ⋯
3 1 + 7 1 + 8 1 + 1 5 1 + ⋯ = 1
Therefore, A = B = 1.