Compare Infinite Sums

Calculus Level 4

Which is larger?

A. m > 1 n > 1 1 n m \begin{aligned} \sum_{\overset{n>1}{m>1}}^{\infty} \frac{1}{n^{m}} \end{aligned}

B. n = 1 1 n ( n + 1 ) {\displaystyle \sum_{n=1}^{\infty} \frac{1}{n(n+1)}}

Note:

  • In the first infinite series, n n and m m are positive integers greater than 1.
  • Double counting is allowed in the first infinite series, i.e. if n m = m n n^{m} = m^{n} , both 1 n m \frac{1}{n^{m}} and 1 m n \frac{1}{m^{n}} appear in the series. For example, since 2 4 = 4 2 2^{4} = 4^{2} , you would count 1 2 4 = 1 4 2 = 1 16 \frac{1}{2^{4}} = \frac{1}{4^{2}} = \frac{1}{16} twice.
  • In the second infinite series, n n is a positive integer.
Equal A B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Marco Milanesi
Oct 8, 2018

A = n = 2 ( m = 2 ( 1 n ) m ) = n = 2 1 n 2 1 1 1 n = n = 2 1 n 2 n n 1 = n = 2 1 n ( n 1 ) = B A=\sum\limits_{n=2}^{\infty}(\sum\limits_{m=2}^{\infty}\left(\frac{1}{n}\right)^m)=\sum\limits_{n=2}^{\infty}\frac{1}{n^2}\cdot\frac{1}{1-\frac{1}{n}}=\sum\limits_{n=2}^{\infty}\frac{1}{n^2}\cdot\frac{n}{n-1}=\sum\limits_{n=2}^{\infty}\frac{1}{n\left(n-1\right)}=B

where I used n = 2 a n = a 2 n = 0 a n = a 2 1 1 a \sum\limits_{n=2}^{\infty}a^n=a^2\sum\limits_{n=0}^{\infty}a^n=a^2\cdot\frac{1}{1-a} for a < 1 \left|a\right|<1

Joshua Lowrance
Oct 4, 2018

A.

\begin{aligned} \sum_{\substack{n>1\\ m>1}}^{\infty} \frac{1}{n^{m}} &=(\frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots) + (\frac{1}{3^{2}} + \frac{1}{3^{3}} + \frac{1}{3^{4}} + \cdots) + (\frac{1}{4^{2}} + \frac{1}{4^{3}} + \frac{1}{4^{4}} + \cdots) +\cdots \\ &=(\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \frac{1}{2^{4}} + \cdots) - \frac{1}{2} + (\frac{1}{3} + \frac{1}{3^{2}} + \frac{1}{3^{3}} + \frac{1}{3^{4}} + \cdots) - \frac{1}{3} + (\frac{1}{4} + \frac{1}{4^{2}} + \frac{1}{4^{3}} + \frac{1}{4^{4}} + \cdots) - \frac{1}{4}+\cdots \\\\ &=1-\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \cdots \\\\\\ \end{aligned}

B.

n = 1 1 n ( n + 1 ) = 1 1 × 2 + 1 2 × 3 + 1 3 × 4 + = 1 1 2 + 1 2 1 3 + 1 3 1 4 + \begin{aligned} {\displaystyle \sum_{n=1}^{\infty} \frac{1}{n(n+1)}} &=\frac{1}{1\times2} + \frac{1}{2\times3} + \frac{1}{3\times4} + \cdots \\ &=1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \cdots \\\\ \end{aligned}

Therefore, A and B are equal .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...