Comparing 3

Geometry Level 4

Let n 4 n \ge 4 be a positive integer and P n P_{n} be a right bi-pyramid.

Let θ \theta be the angle(in degrees) made between two adjacent faces which minimizes the lateral surface area of the right bi-pyramid P n P_{n} when the volume is held constant.

Find the angle θ \theta and show the angle θ \theta is independent of n n .

Let γ n \gamma_{n} be the angle of inclination (in degrees) made between two edges which minimizes the lateral surface area of the right bi-pyramid P n P_{n} above when the volume is held constant

Find γ = lim n γ n \gamma = \lim_{n \rightarrow \infty} \gamma_{n} .

Let x ( t ) = a t 2 + b , y ( t ) = c t 3 + d x(t) = at^2 + b, \:\ y(t) = ct^3 +d .

There are two lines which are both tangent and normal to the above curve.

Find the angle λ \lambda (in degrees) made between the two lines above.

Find λ γ θ 2 \dfrac{\lambda \gamma}{\theta^2} .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Oct 11, 2018

We just need the top pyramid of the bi-pyramid, then double the angles in the final result.

For area of n g o n n - gon :

Let B C = x BC = x be a side of the n g o n n - gon , A C = A B = r AC = AB= r , A D = h AD = h^* , and B A D = 180 n \angle{BAD} = \dfrac{180}{n} .

x 2 = r sin ( 180 n ) r = x 2 sin ( 180 n ) h = x 2 cot ( 180 n ) A A B C = 1 4 cot ( 180 n ) x 2 \dfrac{x}{2} = r \sin(\dfrac{180}{n}) \implies r = \dfrac{x}{2 \sin(\dfrac{180}{n})} \implies h^* = \dfrac{x}{2} \cot(\dfrac{180}{n}) \implies A_{\triangle{ABC}} = \dfrac{1}{4} \cot(\dfrac{180}{n}) x^2 \implies

A n g o n = n 4 cot ( 180 n ) x 2 A_{n - gon} = \dfrac{n}{4} \cot(\dfrac{180}{n}) x^2 \implies the Volume of the pyramid V p = n 12 cot ( 180 n ) x 2 H V_{p} = \dfrac{n}{12} \cot(\dfrac{180}{n}) x^2 H

The lateral surface area P = n x 2 s , P^{*} = \dfrac{nx}{2} * s, where s s is the slant height.

V p = K V_{p} = K (constant) H = 12 K n c o t ( 180 n ) x 2 \implies H = \dfrac{12 K}{n * cot(\dfrac{180}{n}) x^2} \implies P ( x ) = 1 2 m ( n ) x ( j ( n ) m ( n ) ) 2 x 6 + ( 24 K ) 2 P^{*}(x) = \dfrac{1}{2 m(n) x} \sqrt{(j(n) * m(n))^2 x^6 + (24 K)^2} , where m ( n ) = cot ( 180 n ) m(n) = \cot(\dfrac{180}{n}) and j ( n ) = n m ( n ) j(n) = n * m(n)

d P d x = 2 ( j ( n ) m ( n ) ) 2 x 6 ( 24 K ) 2 2 m ( n ) ( j ( n ) m ( n ) ) 2 x 6 + ( 24 K ) 2 x 2 = 0 \implies \dfrac{dP^{*}}{dx} = \dfrac{2 (j(n) * m(n))^2 x^6 - (24 K)^2}{2 m(n) \sqrt{(j(n) * m(n))^2 x^6 + (24 K)^2} * x^2} = 0 x = ( ( 24 K ) 2 2 ( j ( n ) m ( n ) ) 2 ) 1 6 \implies x = (\dfrac{(24 K)^2}{2 (j(n)* m(n))^2})^{\dfrac{1}{6}}

H = 12 K ( j ( n ) ) ( ( 24 K ) 2 2 ( j ( n ) m ( n ) ) 2 ) 1 3 \implies H = \dfrac{12 K}{(j(n)) *( \dfrac{(24 K)^2}{2 (j(n) * m(n))^2})^{\dfrac{1}{3}}}

tan ( θ 2 ) = H h = 2 θ = 2 arctan ( 2 ) 109.47122 \implies \tan(\dfrac{\theta}{2}) = \dfrac{H}{h^{*}} = \sqrt{2} \implies \theta = 2\arctan(\sqrt{2}) \approx 109.47122 and tan ( γ n 2 ) = H r = 2 cos ( 180 n ) tan ( γ 2 ) = lim n tan ( γ n 2 ) = 2 lim n cos ( π / n ) = 2 \tan(\dfrac{\gamma_{n}}{2}) = \dfrac{H}{r} = \sqrt{2} \cos(\dfrac{180}{n}) \implies \tan(\dfrac{\gamma}{2}) = \lim_{n \rightarrow \infty} \tan(\dfrac{\gamma_{n}}{2}) = \sqrt{2} * \lim_{n \rightarrow \infty} \cos(\pi/n) = \sqrt{2} γ = 2 arctan ( 2 ) 109.47122 \implies \gamma = 2\arctan(\sqrt{2}) \approx 109.47122 .

Let x ( t ) = a t 2 + b , y ( t ) = c t 3 + d d y d x ( t = t 1 ) = 3 c 2 a t 1 x(t) = at^2 + b,\:\ y(t) = ct^3 + d \implies \dfrac{dy}{dx}|(t = t_{1}) = \dfrac{3c}{2a}t_{1} \implies the tangent line to the curve at ( x ( t 1 ) , y ( t 1 ) ) (x(t_{1}),y(t_{1})) is: y ( c t 1 3 + d ) = 3 c 2 a t 1 ( x ( a t 1 2 + b ) ) y - (ct_{1}^3 + d) = \dfrac{3c}{2a}t_{1}(x - (at_{1}^2+ b))

Let the line be normal to the curve at ( x ( t 2 ) , y ( t 2 ) ) c ( t 2 t 1 ) ( t 2 2 + t 1 t 2 + t 1 2 ) = 3 c 2 t 1 ( t 2 t 1 ) ( t 2 + t 1 ) c 2 ( t 2 t 1 ) ( 2 t 2 2 t 1 t 2 t 1 2 ) = 0 (x(t_{2}),y(t_{2})) \implies c(t_{2} - t_{1})(t_{2}^2 + t_{1}t_{2} + t_{1}^2) = \dfrac{3c}{2}t_{1}(t_{2} - t_{1})(t_{2} + t_{1}) \implies \dfrac{c}{2}(t_{2} - t_{1})(2t_{2}^2 - t_{1}t_{2} - t_{1}^2) = 0 t 1 t 2 t 2 = t 1 2 t_{1} \neq t_{2} \implies t_{2} = -\dfrac{t_{1}}{2}

Since the tangent is also normal to the curve at ( x ( t 2 ) , y ( t 2 ) ) 9 c 2 4 a 2 t 1 t 2 = 1 (x(t_{2}),y(t_{2})) \implies \dfrac{9c^2}{4a^2}t_{1}t_{2} = -1 9 c 2 8 a 2 t 1 2 = 1 t 1 = ± 2 2 a 3 c \implies \dfrac{9c^2}{8a^2}t_{1}^2 = 1 \implies t_{1} = \pm\dfrac{2\sqrt{2}a}{3c} \implies the two slopes are ± 2 \pm\sqrt{2} .

tan ( λ 2 ) = 2 λ = 2 arctan ( 2 ) 109.47122 \tan(\dfrac{\lambda}{2}) = \sqrt{2} \implies \lambda = 2\arctan(\sqrt{2}) \approx \boxed{109.47122} .

λ γ θ 2 = θ 2 θ 2 = 1 \implies \dfrac{\lambda \gamma}{\theta^2} = \dfrac{\theta^2}{\theta^2} = \boxed{1} .

.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...