Comparing Stars.

Level 2

Let j j be a fixed positive integer and P 2 j + 3 P_{2j + 3} be a 2 j + 3 2j + 3 gram(star) inscribed in a circle of radius r r and P 2 j + 4 P_{2j + 4} be an 2 j + 4 2j + 4 gram(star) inscribed in a circle of radius r r .

If A 2 j + 3 A_{2j + 3} and A 2 j + 4 A_{2j + 4} are the areas of P 2 j + 3 P_{2j + 3} and P 2 j + 4 P_{2j + 4} respectively and A O = lim j A 2 j + 3 A_{O} = \lim_{j \rightarrow \infty} A_{2j + 3} and A E = lim j A 2 j + 4 A_{E} = \lim_{j \rightarrow \infty} A_{2j + 4} and A O A E = a b \dfrac{A_{O}}{A_{E}} = \dfrac{a}{b} , where a a and b b are coprime positive integers, find a + b a + b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rocco Dalto
Feb 6, 2019

Let O P = r OP = r and O C = x P C = r x OC = x \implies PC = r - x .

For convenience let n = 2 j + 3 n = 2j + 3 .

m A O P = π n m\angle{AOP} = \dfrac{\pi}{n} and by Inscribed Angle Theorem m E P F = 1 2 m E O F = 1 2 ( 2 π n ) = π n m A P O = π 2 n m\angle{EPF} = \dfrac{1}{2}m\angle{EOF} = \dfrac{1}{2}(\dfrac{2\pi}{n}) = \dfrac{\pi}{n} \implies m\angle{APO} = \dfrac{\pi}{2n} .

h r x = tan ( π 2 n ) h = ( r x ) tan ( π 2 n ) \dfrac{h}{r - x} = \tan(\dfrac{\pi}{2n}) \implies h = (r - x)\tan(\dfrac{\pi}{2n}) and h = x tan ( π n ) ( r x ) tan ( π 2 n ) = x tan ( π n ) r tan ( π 2 n ) = ( tan ( π n ) + tan ( π 2 n ) ) x h = x \tan(\dfrac{\pi}{n}) \implies (r - x)\tan(\dfrac{\pi}{2n}) = x\tan(\dfrac{\pi}{n}) \implies r\tan(\dfrac{\pi}{2n}) = (\tan(\dfrac{\pi}{n}) + \tan(\dfrac{\pi}{2n}))x x = tan ( π 2 n ) tan ( π n ) + tan ( π 2 n ) r h = tan ( π n ) tan ( π 2 n ) tan ( π n ) + tan ( π 2 n ) r \implies x = \dfrac{\tan(\dfrac{\pi}{2n})}{\tan(\dfrac{\pi}{n}) + \tan(\dfrac{\pi}{2n})} r \implies h = \dfrac{\tan(\dfrac{\pi}{n})\tan(\dfrac{\pi}{2n})}{\tan(\dfrac{\pi}{n}) + \tan(\dfrac{\pi}{2n})} r

tan ( π n ) = tan ( 2 π n ) = 2 tan ( π 2 n ) 1 tan 2 ( π 2 n ) \tan(\dfrac{\pi}{n}) = \tan(\dfrac{2\pi}{n}) = \dfrac{2\tan(\dfrac{\pi}{2n})}{1 - \tan^2(\dfrac{\pi}{2n})} h = 2 tan ( π 2 n ) 3 tan 2 ( π 2 n ) r \implies h = \dfrac{2\tan(\dfrac{\pi}{2n})}{3 - \tan^2(\dfrac{\pi}{2n})} r

A ( n ) = 2 n ( 2 tan ( π 2 n ) 3 tan 2 ( π 2 n ) ) r 2 \implies A(n) = 2n(\dfrac{2\tan(\dfrac{\pi}{2n})}{3 - \tan^2(\dfrac{\pi}{2n})}) r^2

For A O = lim n A ( n ) A_{O} = \lim_{n \rightarrow \infty} A(n)

Using the inequality cos ( x ) < sin ( x ) x < 1 \cos(x) < \dfrac{\sin(x)}{x} < 1 we have:

π cos ( π 2 n ) < 2 n sin ( π 2 n ) < π π < 2 n tan ( π 2 n ) < π sec ( π 2 n ) \pi\cos(\dfrac{\pi}{2n}) < 2n\sin(\dfrac{\pi}{2n}) < \pi \implies \pi < 2n\tan(\dfrac{\pi}{2n}) < \pi\sec(\dfrac{\pi}{2n}) and π lim n sec ( π 2 n ) = π A 0 = lim n A ( n ) = 1 3 π r 2 \pi\lim_{n_\rightarrow \infty} \sec(\dfrac{\pi}{2n}) = \pi \implies A_{0} = \lim_{n_\rightarrow \infty} A(n) = \dfrac{1}{3}\pi r^2 .

For convenience let n = 2 j + 4 n = 2j + 4

. r 1 2 = r 2 cos ( π n ) ) r 2 = r 1 2 cos ( π n ) h = r 1 2 tan ( π n ) A ( n ) = n 2 tan ( π n ) r 1 2 \dfrac{r_{1}}{2} = r_{2}\cos(\dfrac{\pi}{n})) \implies r_{2} = \dfrac{r_{1}}{2\cos(\dfrac{\pi}{n})} \implies h = \dfrac{r_{1}}{2}\tan(\dfrac{\pi}{n}) \implies A^{*}(n) = \dfrac{n}{2}\tan(\dfrac{\pi}{n})r_{1}^2 .

Using the inequality cos ( x ) < sin ( x ) x < 1 π < n sin ( π n ) < π π < n tan ( π n ) < π sec ( π n ) \cos(x) < \dfrac{\sin(x)}{x} < 1 \implies \pi < n\sin(\dfrac{\pi}{n}) < \pi \implies \pi < n\tan(\dfrac{\pi}{n}) < \pi\sec(\dfrac{\pi}{n}) and π lim n sec ( π n ) = π A E = lim n A ( n ) = 1 2 π r 1 2 \pi\lim_{n \rightarrow \infty} \sec(\dfrac{\pi}{n}) = \pi \implies A_{E} = \lim_{n \rightarrow \infty} A^{*}(n) = \dfrac{1}{2}\pi r_{1}^2

A O A E = 2 3 = a b a + b = 5 \implies \dfrac{A_{O}}{A_{E}} = \dfrac{2}{3} = \dfrac{a}{b} \implies a + b = \boxed{5} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...