Let be a fixed positive integer and be a gram(star) inscribed in a circle of radius and be an gram(star) inscribed in a circle of radius .
If and are the areas of and respectively and and and , where and are coprime positive integers, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let O P = r and O C = x ⟹ P C = r − x .
For convenience let n = 2 j + 3 .
m ∠ A O P = n π and by Inscribed Angle Theorem m ∠ E P F = 2 1 m ∠ E O F = 2 1 ( n 2 π ) = n π ⟹ m ∠ A P O = 2 n π .
r − x h = tan ( 2 n π ) ⟹ h = ( r − x ) tan ( 2 n π ) and h = x tan ( n π ) ⟹ ( r − x ) tan ( 2 n π ) = x tan ( n π ) ⟹ r tan ( 2 n π ) = ( tan ( n π ) + tan ( 2 n π ) ) x ⟹ x = tan ( n π ) + tan ( 2 n π ) tan ( 2 n π ) r ⟹ h = tan ( n π ) + tan ( 2 n π ) tan ( n π ) tan ( 2 n π ) r
tan ( n π ) = tan ( n 2 π ) = 1 − tan 2 ( 2 n π ) 2 tan ( 2 n π ) ⟹ h = 3 − tan 2 ( 2 n π ) 2 tan ( 2 n π ) r
⟹ A ( n ) = 2 n ( 3 − tan 2 ( 2 n π ) 2 tan ( 2 n π ) ) r 2
For A O = lim n → ∞ A ( n )
Using the inequality cos ( x ) < x sin ( x ) < 1 we have:
π cos ( 2 n π ) < 2 n sin ( 2 n π ) < π ⟹ π < 2 n tan ( 2 n π ) < π sec ( 2 n π ) and π lim n → ∞ sec ( 2 n π ) = π ⟹ A 0 = lim n → ∞ A ( n ) = 3 1 π r 2 .
For convenience let n = 2 j + 4
. 2 r 1 = r 2 cos ( n π ) ) ⟹ r 2 = 2 cos ( n π ) r 1 ⟹ h = 2 r 1 tan ( n π ) ⟹ A ∗ ( n ) = 2 n tan ( n π ) r 1 2 .
Using the inequality cos ( x ) < x sin ( x ) < 1 ⟹ π < n sin ( n π ) < π ⟹ π < n tan ( n π ) < π sec ( n π ) and π lim n → ∞ sec ( n π ) = π ⟹ A E = lim n → ∞ A ∗ ( n ) = 2 1 π r 1 2
⟹ A E A O = 3 2 = b a ⟹ a + b = 5 .