Comparing Values

Algebra Level 3

19 + 99 \large \sqrt {19} + \sqrt {99}

20 + 98 \large \sqrt {20} + \sqrt {98}

Which value is larger?

Try not to use a calculator.

19 + 99 \sqrt {19} + \sqrt {99} 20 + 98 \sqrt {20} + \sqrt{98} They are equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

d d x ( x + 1 x ) \dfrac {d}{dx}(\sqrt {x+1}-\sqrt x)

= 1 2 x + 1 1 2 x < 0 =\dfrac {1}{2\sqrt {x+1}}-\dfrac {1}{2\sqrt x}<0

So, with increase in x , x + 1 x x, \sqrt {x+1}-\sqrt x decreases. Hence

99 98 < 20 19 \sqrt {99}-\sqrt {98}<\sqrt {20}-\sqrt {19}

20 + 98 > 19 + 99 \implies \boxed {\sqrt {20}+\sqrt {98}>\sqrt {19}+\sqrt {99}} .

Define f ( x ) = x + 118 x f(x) = \sqrt x + \sqrt{118-x} . Then f ( x ) = d f ( x ) d x = 1 2 x 1 2 118 x f'(x) = \dfrac {df(x)}{dx} = \dfrac 1{2\sqrt x} - \dfrac 1{2\sqrt{118-x}} . Putting f ( x ) = 0 f'(x) = 0 , x = 118 x x = 59 \implies x = 118 -x \implies x = 59 . This means that f ( x ) > 0 f'(x)> 0 or f ( x ) f(x) is increasing for x < 58 x < 58 . Therefore f ( 20 ) > f ( 19 ) f(20) > f(19) or 20 + 98 > 19 + 99 \boxed{\sqrt{20}+\sqrt{98}} > \sqrt{19} + \sqrt{99} .

Pop Wong
Aug 17, 2020

Let A = 19 + 99 , B = 20 + 98 A = \sqrt{19} + \sqrt{99}, B = \sqrt{20} + \sqrt{98}

  • A 2 = 19 + 99 + 2 19 × 99 = 118 + 2 19 × 99 A^2 = 19 + 99 + 2\sqrt{19\times99} = 118 + 2\sqrt{19\times99}
  • B 2 = 20 + 98 + 2 20 × 98 = 118 + 2 20 × 98 B^2 = 20+98+ 2\sqrt{20\times98} = 118 + 2\sqrt{20\times98}

\therefore compare 19 × 99 19 \times 99 and 20 × 98 20 \times 98 will get which is larger.

  • 19 × 99 = 19 × ( 100 1 ) = 1881 19 \times 99 = 19 \times (100-1) = 1881
  • 20 × 98 = 20 × ( 100 2 ) = 1960 > 1881 20 \times 98 = 20 \times (100-2) = 1960 > 1881

B 2 > A 2 B > A \therefore B^2 > A^2 \implies B > A as both A A and B B are positive.

Qweros Bistoros
Aug 8, 2020

20 98 = 20 100 20 2 = 2000 40 > 1900 = 19 100 > 19 99 20\cdot98 = 20\cdot100-20\cdot2 = 2000 - 40 > 1900 = 19\cdot100 > 19\cdot99

20 98 > 19 99 20\cdot98 > 19\cdot99 \implies

20 98 > 19 99 \sqrt{20\cdot98} > \sqrt{19\cdot99} \implies

2 20 98 + 118 > 2 19 99 + 118 2\cdot\sqrt{20\cdot98} + 118 > 2\cdot\sqrt{19\cdot99} + 118 \implies

( 20 ) 2 + 2 20 98 + ( 98 ) 2 > ( 19 ) 2 + 2 19 99 + ( 99 ) 2 (\sqrt{20})^2 + 2\cdot\sqrt{20}\cdot\sqrt{98} + (\sqrt{98})^2 > (\sqrt{19})^2 + 2\cdot\sqrt{19}\cdot\sqrt{99} + (\sqrt{99})^2 \implies

( 20 + 98 ) 2 > ( 19 + 99 ) 2 (\sqrt{20} + \sqrt{98})^2 > (\sqrt{19} + \sqrt{99})^2 \implies

( 20 + 98 ) 2 > ( 19 + 99 ) 2 \sqrt{(\sqrt{20} + \sqrt{98})^2} > \sqrt{(\sqrt{19} + \sqrt{99})^2} \implies

20 + 98 > 19 + 99 |\sqrt{20} + \sqrt{98}| > |\sqrt{19} + \sqrt{99}| \implies

20 + 98 > 19 + 99 \boxed{\sqrt{20} + \sqrt{98} > \sqrt{19} + \sqrt{99} }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...