Comparing with Trignometry.

Geometry Level 3

For θ ( π 4 , π 2 ) , \theta \in \left(\frac{\pi}{4},\frac{\pi}{2}\right), let A = ( cos θ ) cos θ , B = ( sin θ ) cos θ , A =( \cos \theta )^{\ \cos \theta}, B =( \sin \theta )^{\ \cos \theta}, and C = ( cos θ ) sin θ . C=( \cos \theta) ^{\ \sin \theta}.

Which of the following is true?


Problem Courtsey: University of South Carolina

A < B < C A<B<C A < C < B A<C<B B < A < C B<A<C B < C < A B<C<A C < A < B C<A<B

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

For θ ( π 4 , π 2 ) we have, 1 2 < cos θ < sin θ < 1 ( 1 ) , B A = ( sin θ ) cos θ ( cos θ ) cos θ = ( sin θ cos θ ) cos θ = tan θ cos θ B A > 1 Since tan θ > 1 and cos θ > 0 for θ ( π 4 , π 2 ) B > A ( 2 ) C A = ( cos θ ) sin θ ( cos θ ) cos θ = cos θ sin θ cos θ C A < 1 Since cos θ < 1 and sin θ cos θ > 0 for θ ( π 4 , π 2 ) A > C ( 3 ) From ( 2 ) and ( 3 ) we have, C < A < B \begin{aligned}\text{For }\theta \in &\left(\frac{\pi}{4},\frac{\pi}{2}\right)\text{we have,}\\ \dfrac{1}{\sqrt{2}}&<\cos \theta<\sin \theta<1\hspace{4mm}\color{#3D99F6}(1),\\\\ \dfrac{B}{A}&=\dfrac{(\sin \theta) ^{\ \cos \theta}}{(\cos \theta) ^{\ \cos \theta}}\\ &=(\dfrac{\sin \theta}{\cos \theta})^{\ \cos \theta}\\ &=\tan \theta ^{\ \cos \theta}\\ \implies \dfrac{B}{A}&>1 \hspace{4mm}\color{#3D99F6}\small\text{Since }\tan \theta>1 \text{ and }\cos \theta>0 \text{ for }\theta \in \left(\frac{\pi}{4},\frac{\pi}{2}\right)\\ \implies B&>A\hspace{4mm}\color{#3D99F6}(2)\\\\ \dfrac{C}{A}&=\dfrac{(\cos \theta) ^{\ \sin \theta}}{(\cos \theta) ^{\ \cos \theta}}\\ &=\cos \theta ^{\ \sin \theta-\cos \theta}\\ \implies \dfrac{C}{A}&<1 \hspace{4mm}\color{#3D99F6}\small\text{Since }\cos \theta<1 \text{ and }\sin \theta-\cos \theta>0 \text{ for }\theta \in \left(\frac{\pi}{4},\frac{\pi}{2}\right)\\ \implies A&>C\hspace{4mm}\color{#3D99F6}(3)\\\\ \text{From }\color{#3D99F6}(2) &\color{#333333}\text {and }\color{#3D99F6}(3)\color{#333333}\text{ we have,}\\ &\color{#EC7300} \boxed{\color{#333333}C<A<B}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...