Comparison

Algebra Level 1

Which of these number is greater:

8 0 105 or 2 8 140 ? \large 80^{105} \quad \text{ or } \quad 28^{140} ?

8 0 105 80^{105} 2 8 140 28^{140}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

7 solutions

Nxin Nasn
Feb 21, 2016

The two numbers 80 80 and 28 28 are close to a number with a raised power, so :

8 0 105 < 8 1 105 = ( 3 4 ) 105 = 3 420 80^{105} < 81^{105}=\left( 3^{4}\right) ^{105}=3^{420}

2 8 140 > 2 7 140 = ( 3 3 ) 140 = 3 420 28^{140} > 27^{140}=\left( 3^{3}\right) ^{140}=3^{420}

therefore :

8 0 105 < 3 420 < 2 8 140 80^{105} < 3^{420} < 28^{140}

\fbox{\$80^{105} < 28^{140}\$}

Typo... In the second line it should be 28^140

Department 8 - 5 years, 3 months ago

Log in to reply

i fixed it

Nxin Nasn - 5 years, 3 months ago
Kay Xspre
Feb 21, 2016

Find the 35th root of them then we will get 8 0 3 80^3 and 2 8 4 28^4 As 8 0 3 = 512 , 000 ; 2 8 4 = 614 , 656 8 0 105 < 2 8 140 80^3 = 512,000;\:28^4 = 614,656\Rightarrow 80^{105}<28^{140}

I love this way but what should you do when the powers are co-prime?

Department 8 - 5 years, 3 months ago
Kushagra Sahni
Feb 22, 2016

Just Find the number of digits in each number.

Harsh Khatri
Feb 22, 2016

Computing the ratio

R = 8 0 105 : 2 8 140 = 4 210 × 5 105 : 4 140 × 7 140 R = 80^{105} : 28^{140} = 4^{210}\times 5^{105} : 4^{140}\times 7^{140}

= 4 70 × 5 105 : 7 140 \displaystyle = 4^{70}\times 5^{105} : 7^{140}

= ( 4 2 × 5 3 ) 35 : ( 7 4 ) 35 \displaystyle = (4^2 \times 5^3)^{35} : (7^4)^{35}

= ( 2000 ) 35 : ( 2401 ) 35 \displaystyle = (2000)^{35} : (2401)^{35}

R < 1 \displaystyle \Rightarrow R < 1

8 0 105 < 2 8 140 \displaystyle \Rightarrow \boxed{80^{105} < 28^{140}}

RaGhu MudiRaj
Mar 3, 2016

Let a=80^105 Applying log to the base 10 on both sides we get loga= 150log80 Then after multiplication we get a=10^199.82. Now b=28^140 same as above we get b=10^202.60 a<b

Michael Friese
Feb 28, 2016

Use Log Base Transform: 80^105 is equal to 28^138.0805995 28^138.0805995< 28^140

Ely Gangat
Feb 28, 2016

much simpler solution balancing the outer exponents: (28^4)^35 > (80^3)^35

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...