Complete the square!

Algebra Level 3

Find the sum of all real x x satisfying the equation below:

x 2 + x 2 ( x + 1 ) 2 = 5 4 x^2+\frac{x^2}{(x+1)^2} = \frac{5}{4}


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Klement Chua
May 14, 2021

By completing the square, ( x x x + 1 ) 2 + 2 x 2 x + 1 = 5 4 (x-\frac{x}{x+1})^2+\frac{2x^2}{x+1}=\frac{5}{4} ( x 2 x + 1 ) 2 + 2 × x 2 x + 1 = 5 4 (\frac{x^2}{x+1})^2+2 \times \frac{x^2}{x+1} = \frac{5}{4}

Let a = x 2 x + 1 a = \frac{x^2}{x+1} , a 2 + 2 a = 5 4 a^2+2a = \frac{5}{4} 4 a 2 + 8 a 5 = 0 4a^2+8a-5 = 0 a = 1 2 , a = 5 2 a = \frac{1}{2}, a= -\frac{5}{2}

Substituting a a back into the original equation, we get x 1 = 1 2 , x 2 = 1 x_1=-\frac{1}{2}, x_2=1 x 1 + x 2 = 1 2 x_1+x_2 = \boxed{\frac{1}{2}}

@Klement Chua , we can use \left( \right) ( 1 2 ) \left(\dfrac 12 \right) for the right size brackets all the times.

Chew-Seong Cheong - 4 weeks ago

Oh okay, thank you for the advice!

Klement Chua - 4 weeks ago
Chew-Seong Cheong
May 14, 2021

x 2 + x 2 ( x + 1 ) 2 = 5 4 x 2 + x 2 1 + 1 ( x + 1 ) 2 = 5 4 x 2 + x 1 x + 1 + 1 ( x + 1 ) 2 = 5 4 x 2 + 2 x x + 1 + 1 ( x + 1 ) 2 = 5 4 + x x + 1 + 1 x + 1 ( x + 1 x + 1 ) 2 = 9 4 x + 1 x + 1 = ± 3 2 x + 1 + 1 x + 1 = { 5 2 1 2 \begin{aligned} x^2 + \frac {x^2}{(x+1)^2} & = \frac 54 \\ x^2 + \frac {x^2-1+1}{(x+1)^2} & = \frac 54 \\ x^2 + \frac {x-1}{x+1} + \frac 1{(x+1)^2} & = \frac 54 \\ x^2 + \frac {2x}{x+1} + \frac 1{(x+1)^2} & = \frac 54 + \frac x{x+1} + \frac 1{x+1} \\ \left(x + \frac 1{x+1} \right)^2 & = \frac 94 \\ \implies x + \frac 1{x+1} & = \pm \frac 32 \\ x + 1 + \frac 1{x+1} & = \begin{cases} \dfrac 52 \\ - \dfrac 12 \end{cases} \end{aligned}

{ 2 ( x + 1 ) 2 5 ( x + 1 ) + 2 = 0 ( 2 ( x + 1 ) 1 ) ( ( x + 1 ) 2 ) = 0 x + 1 = 1 2 , 2 x = 1 2 , 1 2 ( x + 1 ) 2 + ( x + 1 ) + 2 = 0 No real solution. \implies \begin{cases} \begin{aligned} 2(x+1)^2 - 5(x+1) + 2 & = 0 \\ (2(x+1)-1)((x+1)-2) & = 0 \\ x + 1 & = \frac 12, \ 2 & \\ \implies x & = - \frac 12, \ 1 \end{aligned} \\ \begin{aligned} 2(x+1)^2 + (x+1) + 2 & = 0 & \small \red{\text{No real solution.}} \end{aligned} \end{cases}

Therefore the sum of roots is 1 2 + 1 = 1 2 -\dfrac 12 + 1 = \boxed{\dfrac 12} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...