Completely Complex

Algebra Level 5

x 2018 + x 2017 + x 2016 + . . . + x 2 + x + 1 = 0 x^{2018}+x^{2017}+x^{2016}+...+x^2+x+1=0 There are 2018 distinct roots of the equation, a 1 a_1 , a 2 a_2 , a 3 a_3 , ..., a 2017 a_{2017} , and a 2018 a_{2018} . Find k = 1 2018 a k 2 a k + 1 \displaystyle \sum_{k=1}^{2018}\frac{a_k^2}{a_k+1} .


The answer is -1010.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mark Hennings
Jun 14, 2018

If a 1 , a 2 , . . . , a 2 n a_1,a_2,...,a_{2n} are the roots of the polynomial f n ( X ) = X 2 n + X 2 n 1 + + X + 1 f_n(X) \; = \; X^{2n} + X^{2n-1} + \cdots + X + 1 then 1 + a 1 , 1 + a 2 , . . . , 1 + a 2 n 1+a_1,1+a_2,...,1+a_{2n} are the roots of the polynomial g n ( X ) = f n ( X 1 ) = ( X 1 ) 2 n + ( X 1 ) 2 n 1 + + ( X 1 ) + 1 g_n(X) \; =\; f_n(X-1) = (X-1)^{2n} + (X-1)^{2n-1} + \cdots + (X-1) + 1 The last two terms of this polynomial are { 2 n ( 2 n 1 ) + ( 2 n 2 ) ( 2 n 3 ) + + 2 1 } X + f n ( 1 ) = n X + 1 \cdots - \big\{2n - (2n-1) + (2n-2) - (2n-3) + \cdots + 2 - 1\big\}X + f_n(-1) \; = \; \cdots -nX + 1 and hence we deduce that h n ( X ) = X 2 n g n ( X 1 ) h_n(X) = X^{2n}g_n(X^{-1}) has leading terms h n ( X ) = X 2 n n X 2 n 1 + h_n(X) \; = \; X^{2n} - nX^{2n-1} + \cdots But h n ( X ) h_n(X) is the monic polynomial with zeros 1 a 1 + 1 , 1 a 2 + 1 , . . . , 1 a 2 n + 1 \frac{1}{a_1+1},\tfrac{1}{a_2+1},...,\tfrac{1}{a_{2n}+1} , and so j = 1 2 n 1 a j + 1 = n \sum_{j=1}^{2n} \frac{1}{a_j + 1} \; = \; n Thus j = 1 2 n a j 2 a j + 1 = j = 1 n ( a j 1 + 1 a j + 1 ) = j = 1 2 n a j 2 n + j = 1 2 n 1 a j + 1 = 1 2 n + n = n 1 \sum_{j=1}^{2n} \frac{a_j^2}{a_j + 1} \; = \; \sum_{j=1}^n \left(a_j - 1 + \frac{1}{a_j + 1}\right) \; = \; \sum_{j=1}^{2n}a_j - 2n + \sum_{j=1}^{2n}\frac{1}{a_j+1} \; = \; -1 - 2n + n \; = \; -n-1 making the answer in this case 1009 1 = 1010 -1009-1 = \boxed{-1010} .

Atman Kar
Jun 15, 2018

this is a standard problem. if f is a polynomial in x. if F(x)=0 has roots sayx1,x2,.....xn. then f(x-1)=0 has roots 1+x1,1+x2,.......,1+xn, and x^n*f((1/x)-1)=0 has roots 1/(1+x1), 1/(1+x2)......... but there is a high chance of making mistake while calculating.

Srikanth Tupurani - 2 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...