Complex 360!

Algebra Level 5

( x + 1 ) ( x + 2 ) ( x + 3 ) 2 ( x + 4 ) ( x + 5 ) 360 \large (x+1)(x+2)(x+3)^2 (x+4)(x+5) - 360

If the non-real complex roots of the expression above can be expressed as

± ( x y ) z ± ( x + y ) i \pm \left( \sqrt { \sqrt { x } -y } \right) -z\pm \left( \sqrt { \sqrt { x } +y } \right) i \,

where x , y , x, y, and z z are integers, find the value of x + y + z x+y+z .


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
May 7, 2016

The substitution ( x + 3 ) 2 = t (x+3)^2=t leaves us with t ( t 1 ) ( t 4 ) 360 = ( t 9 ) ( t 2 + 4 t + 40 ) = 0 t(t-1)(t-4)-360=(t-9)(t^2+4t+40)=0 so that t = 2 ± 6 i t=-2\pm 6i and x = ± 10 1 3 ± 10 + 1 i x=\pm\sqrt{\sqrt{10}-1}-3\pm\sqrt{\sqrt{10}+1}i . The answer is 14 \boxed{14}

Ludho Madrid
May 7, 2016

( x + 1 ) ( x + 2 ) ( x + 3 ) 2 ( x + 4 ) ( x + 5 ) 360 = 0 ( x + 1 ) ( x + 5 ) ( x + 3 ) 2 ( x + 2 ) ( x + 4 ) 360 = 0 ( x 2 + 6 x + 5 ) ( x 2 + 6 x + 9 ) ( x 2 + 6 x + 8 ) 360 = 0 \left( x+1 \right) \left( x+2 \right) { \left( x+3 \right) }^{ 2 }\left( x+4 \right) \left( x+5 \right) -360=0\\ \left( x+1 \right) \left( x+5 \right) { \left( x+3 \right) }^{ 2 }\left( x+2 \right) \left( x+4 \right) -360=0\\ \left( { x }^{ 2 }+6x+5 \right) \left( { x }^{ 2 }+6x+9 \right) \left( { x }^{ 2 }+6x+8 \right) -360=0\\

Let z = x 2 + 6 x z={ x }^{ 2 }+6x .

( z + 5 ) ( z + 8 ) ( z + 9 ) 360 = 0 z ( z 2 + 22 z + 157 ) = 0 z = 0 x 2 + 6 x = 0 x = 0 , 6 ( n o t n e e d e d ) z 2 + 22 z + 157 = 0 z 2 + 22 z + 121 = 36 z = 11 ± 6 i x 2 + 6 x = 11 ± 6 i x 2 + 6 x + 9 = 2 ± 6 i \left( z+5 \right) \left( z+8 \right) \left( z+9 \right) -360=0\\ z\left( { z }^{ 2 }+22z+157 \right) =0\\ \\ z=0\rightarrow { x }^{ 2 }+6x=0\rightarrow x=0,-6\quad (not\quad needed)\\ \\ { z }^{ 2 }+22z+157=0\rightarrow { z }^{ 2 }+22z+121=-36\\ z=-11\pm 6i\\ { x }^{ 2 }+6x=-11\pm 6i\\ { x }^{ 2 }+6x+9=-2\pm 6i

{ \left( a+bi \right) }^{ 2 }=-2\pm 6i\\ a^{ 2 }+2abi-b^{ 2 }=-2\pm 6i\\ \\ \left\{ \begin{matrix} a^{ 2 }-b^{ 2 }=-2 \\ 2ab=\pm 6 \end{matrix} \right \\ \\ a^{ 2 }-\left( \pm \frac { 3 }{ a } \right) ^{ 2 }=-2\rightarrow a^{ 4 }-9=-2{ a }^{ 2 }\\ \left( \pm \frac { 3 }{ b } \right) ^{ 2 }-b^{ 2 }=-2\rightarrow 9-b^{ 4 }=-2{ b }^{ 2 }\\ \\ a^{ 4 }+2{ a }^{ 2 }+1=10\\ b^{ 4 }-2{ b }^{ 2 }+1=10\\ \\ { a }^{ 2 }+1=\pm \sqrt { 10 } \rightarrow a=\pm \sqrt { \sqrt { 10 } -1 } \\ { b }^{ 2 }-1=\pm \sqrt { 10 } \rightarrow b=\pm \sqrt { \sqrt { 10 } +1 } \\ \\ x+3=\pm \sqrt { \sqrt { 10 } -1 } \pm \sqrt { \sqrt { 10 } +1 } i\\ x=\pm \sqrt { \sqrt { 10 } -1 } -3\pm \sqrt { \sqrt { 10 } +1 } i

Therefore x + y + z = 10 + 1 + 3 = 14 x+y+z=10+1+3=14 .

You could have substituted t t in place of x 2 + 6 x + 5 x^{2}+6x+5 .

This would have made the manipulations simpler.

Aditya Sky - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...