( x + 1 ) ( x + 2 ) ( x + 3 ) 2 ( x + 4 ) ( x + 5 ) − 3 6 0
If the non-real complex roots of the expression above can be expressed as
± ( x − y ) − z ± ( x + y ) i
where x , y , and z are integers, find the value of x + y + z .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
( x + 1 ) ( x + 2 ) ( x + 3 ) 2 ( x + 4 ) ( x + 5 ) − 3 6 0 = 0 ( x + 1 ) ( x + 5 ) ( x + 3 ) 2 ( x + 2 ) ( x + 4 ) − 3 6 0 = 0 ( x 2 + 6 x + 5 ) ( x 2 + 6 x + 9 ) ( x 2 + 6 x + 8 ) − 3 6 0 = 0
Let z = x 2 + 6 x .
( z + 5 ) ( z + 8 ) ( z + 9 ) − 3 6 0 = 0 z ( z 2 + 2 2 z + 1 5 7 ) = 0 z = 0 → x 2 + 6 x = 0 → x = 0 , − 6 ( n o t n e e d e d ) z 2 + 2 2 z + 1 5 7 = 0 → z 2 + 2 2 z + 1 2 1 = − 3 6 z = − 1 1 ± 6 i x 2 + 6 x = − 1 1 ± 6 i x 2 + 6 x + 9 = − 2 ± 6 i
{ \left( a+bi \right) }^{ 2 }=-2\pm 6i\\ a^{ 2 }+2abi-b^{ 2 }=-2\pm 6i\\ \\ \left\{ \begin{matrix} a^{ 2 }-b^{ 2 }=-2 \\ 2ab=\pm 6 \end{matrix} \right \\ \\ a^{ 2 }-\left( \pm \frac { 3 }{ a } \right) ^{ 2 }=-2\rightarrow a^{ 4 }-9=-2{ a }^{ 2 }\\ \left( \pm \frac { 3 }{ b } \right) ^{ 2 }-b^{ 2 }=-2\rightarrow 9-b^{ 4 }=-2{ b }^{ 2 }\\ \\ a^{ 4 }+2{ a }^{ 2 }+1=10\\ b^{ 4 }-2{ b }^{ 2 }+1=10\\ \\ { a }^{ 2 }+1=\pm \sqrt { 10 } \rightarrow a=\pm \sqrt { \sqrt { 10 } -1 } \\ { b }^{ 2 }-1=\pm \sqrt { 10 } \rightarrow b=\pm \sqrt { \sqrt { 10 } +1 } \\ \\ x+3=\pm \sqrt { \sqrt { 10 } -1 } \pm \sqrt { \sqrt { 10 } +1 } i\\ x=\pm \sqrt { \sqrt { 10 } -1 } -3\pm \sqrt { \sqrt { 10 } +1 } i
Therefore x + y + z = 1 0 + 1 + 3 = 1 4 .
You could have substituted t in place of x 2 + 6 x + 5 .
This would have made the manipulations simpler.
Problem Loading...
Note Loading...
Set Loading...
The substitution ( x + 3 ) 2 = t leaves us with t ( t − 1 ) ( t − 4 ) − 3 6 0 = ( t − 9 ) ( t 2 + 4 t + 4 0 ) = 0 so that t = − 2 ± 6 i and x = ± 1 0 − 1 − 3 ± 1 0 + 1 i . The answer is 1 4