Complex Algebra

Algebra Level 3

If ( a + i b ) x + i y ( a i b ) x i y = α + i β \frac { { (a+ib) }^{ x+iy } }{ { (a-ib) }^{ x-iy } } =\alpha +i\beta , find the value of α 2 + β 2 { \alpha }^{ 2 }+{ \beta }^{ 2 } . ( i = 1 i=\sqrt { -1 } )


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Sep 17, 2020

Let's do some algebraic manipulation here:

( a + b i ) x + y i ( a b i ) x y i = ( a + b i a b i ) x ( a + b i ) y i ( a b i ) y i \large \frac{(a+bi)^{x+yi}}{(a-bi)^{x-yi}} = ( \frac{a+bi}{a-bi} )^{x} \cdot \frac{(a+bi)^{yi}}{(a-bi)^{-yi}} ;

or a 2 + b 2 e i arctan ( b / a ) x a 2 + b 2 e i arctan ( b / a ) x ( a 2 + b 2 e arctan ( b / a ) x a 2 + b 2 e arctan ( b / a ) x ) y = e i 2 arctan ( b / a ) x 1 y = e i 2 arctan ( b / a ) x ; \large \frac{\sqrt{a^2+b^2} e^{i \arctan(b/a) \cdot x} }{ \sqrt{a^2+b^2} e^{-i \arctan(b/a) \cdot x}} \cdot (\frac{\sqrt{a^2+b^2} e^{-\arctan(b/a) \cdot x} }{ \sqrt{a^2+b^2} e^{-\arctan(b/a) \cdot x}})^{y} = e^{i 2\arctan(b/a) \cdot x} \cdot 1^{y} = e^{i \cdot 2\arctan(b/a) \cdot x};

or e i 2 arctan ( b / a ) x = cos ( 2 arctan ( b / a ) x ) + i sin ( 2 arctan ( b / a ) x ) = α + β i . e^{i \cdot 2\arctan(b/a) \cdot x} = \cos(2\arctan(b/a) \cdot x) + i \cdot \sin(2\arctan(b/a) \cdot x) = \alpha + \beta i.

Finally, α 2 + β 2 = cos 2 ( 2 arctan ( b / a ) x ) + sin 2 ( 2 arctan ( b / a ) x ) = 1 . \alpha^{2} + \beta^{2} = \cos^{2}(2\arctan(b/a) \cdot x) + \sin^{2}(2\arctan(b/a) \cdot x) = \boxed{1}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...