Evaluate to 6 decimal places. Note that the summation is indexed by , and that denotes the imaginary unit .
Bonus: Find a beautiful closed form for the sum.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
A possible solution could be:
I = ∮ Γ f ( z ) cot ( π z ) d z = ∮ Γ ( z + 1 + i ) 2 1 cot ( π z ) d z = ∮ Γ ( z + 1 + i ) 2 tan ( π z ) 1 d z
I = ∮ Γ ( z + 1 + i ) 2 tan ( π z ) 1 d z = 2 π i R e s ( f ; z 0 ) + 2 π i k = − s ∑ s R e s ( f ; z k ) .
R 1 = R e s ( f , z 0 ) = z → − 1 − i lim ( ( z + 1 + i ) 2 ( z + 1 + i ) 2 tan π z 1 ) d z d = z → − 1 − i lim ( cot ( π z ) d z d = z → − 1 − i lim sin 2 ( π z ) − π = sin 2 ( π + π i ) − π = sinh 2 π π .
R 2 = R e s ( f ; z k ) = ( z + 1 + i ) 2 ( tan ( π z ) ) d z d 1 ∣ ∣ ∣ ∣ ∣ z = k = π ( z + 1 + i ) 2 cos 2 ( π z ) ∣ ∣ ∣ ∣ ∣ z = k = π ( k + 1 + i ) 2 1 .
I = 2 π i sinh 2 π π + 2 π i k = − s ∑ s π ( k + 1 + i ) 2 1
∣ z ∣ → ∞ lim ∮ Γ f ( z ) cot ( π z ) d z = 0
using the function's propriety stated in the beginning.
sinh 2 ( π ) 2 π 2 i + 2 i k = − ∞ ∑ ∞ ( k + 1 + i ) 2 1 = 0 ⟹ k = − ∞ ∑ ∞ ( k + 1 + i ) 2 1 = sinh 2 π − π 2 = − 0 . 0 7 3 9 9 9 .