Complex analysis applications-II

Calculus Level 5

n = 1 ( 1 + i + n ) 2 \large \sum_{n = -\infty}^\infty \frac{1}{(1 + i + n)^2}

Evaluate to 6 decimal places. Note that the summation is indexed by n n , and that i i denotes the imaginary unit .

Bonus: Find a beautiful closed form for the sum.


The answer is -0.073999.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Indre Dan
Mar 24, 2018

A possible solution could be:

  • Consider the following rational complex function: f : C C , f ( z ) = 1 ( z + 1 + i ) 2 f:\mathbb{C} \rightarrow \mathbb{C}, \quad f(z)=\frac { 1 }{ { (z+1+i) }^{ 2 } } we will include the singularities,
  • For this function suppose that the function has the following propriety: M > 0 \exists M> 0 , such that for a z |z| sufficiently large z 2 f ( z ) M \implies \; { |z }^{ 2 }f(z)|\le M ,
  • We will apply the Residue Theorem on the circles given by the equation: Γ : z = σ + 1 2 , σ N \Gamma :\;|z|=\sigma +\frac { 1 }{ 2 },\; \sigma \in \mathbb{N} , and we get:

I = Γ f ( z ) cot ( π z ) d z = Γ 1 ( z + 1 + i ) 2 cot ( π z ) d z = Γ 1 ( z + 1 + i ) 2 tan ( π z ) d z I=\oint _{ \Gamma }{ f(z)\cot { (\pi z) } dz } = \oint _{ \Gamma }^{ }{ \frac { 1 }{ { (z+1+i) }^{ 2 } } \cot { (\pi z) } dz } = \oint _{ \Gamma }^{ }{ \frac { 1 }{ { (z+1+i) }^{ 2 }\tan { (\pi z) } } dz }

  • There the following singularities: z 0 = 1 i z_{0} = -1-i and z k = k , k Z z_{k} = k, \; k\in \mathbb{Z} .
  • Applying Residue Theorem for the integral from above :

I = Γ 1 ( z + 1 + i ) 2 tan ( π z ) d z = 2 π i R e s ( f ; z 0 ) + 2 π i k = s s R e s ( f ; z k ) I = \oint _{ \Gamma }^{ }{ \frac { 1 }{ { (z+1+i) }^{ 2 }\tan { (\pi z) } } dz } = 2\pi i Res{(f;z_0)}+2\pi i \sum _{ k=-s }^{ s }{ Res(f;z_{ k }) } .

  • Now we will compute the residues from above:

R 1 = R e s ( f , z 0 ) = lim z 1 i ( ( z + 1 + i ) 2 1 ( z + 1 + i ) 2 tan π z ) d d z = lim z 1 i ( cot ( π z ) d d z = lim z 1 i π sin 2 ( π z ) = π sin 2 ( π + π i ) = π sinh 2 π . R_1 = Res(f,z_0)=\lim _{ z\rightarrow -1-i }{ \Bigg( {(z+1+i) }^{ 2 }\frac { 1 }{ { (z+1+i) }^{ 2 }\tan { \pi z } } \Bigg)\frac { d }{ dz } }=\lim _{ z\rightarrow -1-i }{ (\cot { (\pi z } ) } \frac { d }{ dz } =\lim _{ z\rightarrow -1-i } \frac { -\pi }{ \sin ^{ 2 }{ (\pi z) } } = \frac { -\pi }{ \sin ^{ 2 }{ (\pi +\pi i) } } = \boxed { \frac { \pi }{ \sinh ^{ 2 }{ \pi } } }.

R 2 = R e s ( f ; z k ) = 1 ( z + 1 + i ) 2 ( tan ( π z ) ) d d z z = k = cos 2 ( π z ) π ( z + 1 + i ) 2 z = k = 1 π ( k + 1 + i ) 2 . R_2 = Res(f;z_k)= \frac { 1 }{ (z+1+i)^{ 2 }(\tan (\pi z))\frac { d }{ dz } } \Bigg|_{z=k} = \frac { \cos ^{ 2 }{ (\pi z) } }{ \pi (z+1+i)^{ 2 } } \Bigg|_{z=k} = \boxed{ \frac { 1 }{ \pi (k+1+i)^2 } }.

  • So we get that:

I = 2 π i π sinh 2 π + 2 π i k = s s 1 π ( k + 1 + i ) 2 I=2 \pi i \frac { \pi }{ \sinh ^{ 2 }{ \pi } } + 2 \pi i \sum _{ k=-s }^{ s }{ \frac { 1 }{ \pi (k+1+i)^2 } }

  • Now we will make z |z| \rightarrow \infty and one can prove that:

lim z Γ f ( z ) cot ( π z ) d z = 0 \lim_{|z| \rightarrow \infty} {\oint _{ \Gamma }{ f(z)\cot { (\pi z) } dz }} = 0

using the function's propriety stated in the beginning.

  • In the end, for σ \sigma \rightarrow \infty we obtain:

2 π 2 i sinh 2 ( π ) + 2 i k = 1 ( k + 1 + i ) 2 = 0 k = 1 ( k + 1 + i ) 2 = π 2 sinh 2 π = 0.073999 . \frac { 2\pi^2 i }{ \sinh^2{(\pi)} } + 2i \sum _{ k= -\infty }^{ \infty }{ \frac { 1 }{ (k+1+i)^2 } } = 0 \implies \sum _{ k= -\infty }^{ \infty }{ \frac { 1 }{ (k+1+i)^2 } } = \frac { -\pi^2 }{ \sinh^2{\pi} } = \boxed{-0.073999}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...