Complex Angles

Algebra Level 3

Consider the complex numbers w = 3 i w = \sqrt{3} - i and z = 2 + 2 i z = 2 + 2i . The product of these two complex numbers can be written in the form r [ cos a + i sin a ] r[\cos a^\circ + i\sin a^\circ ] , where r r is a positive real number and 0 a < 36 0 0^\circ \leq a^\circ < 360^\circ . What is the value of a a (in degrees)?

Details and assumptions

i i is the imaginary unit, where i 2 = 1 i^2=-1 .


The answer is 15.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Arron Kau Staff
May 13, 2014

Solution 1: Converting to polar coordinates, we have w 2 = ( 3 ) 2 + ( 1 ) 2 = 4 w = 2 |w|^2 = \left(\sqrt{3}\right)^2 + (-1)^2 = 4 \Rightarrow |w| = 2 w = 2 ( 3 2 i 2 ) = 2 ( cos ( 3 0 ) i sin ( 3 0 ) ) w = 2\left(\frac{\sqrt{3}}{2} -\frac{i}{2}\right) = 2\left(\cos(30^\circ) -i\sin(30^\circ)\right) and z 2 = 2 2 + 2 2 = 8 z = 2 2 |z|^2 = 2^2 + 2^2 = 8 \Rightarrow |z| = 2\sqrt{2} z = 2 2 ( 1 2 + i 2 ) = 2 2 ( cos ( 4 5 ) + i sin ( 4 5 ) ) z = 2\sqrt{2} \left(\frac{1}{\sqrt{2}} + \frac{i}{\sqrt{2}}\right) = 2\sqrt{2}\left(\cos(45^\circ) + i\sin(45^\circ)\right) .

Multiplying these two, w z = [ 2 ( cos ( 3 0 ) i sin ( 3 0 ) ) ] [ 2 2 ( cos ( 4 5 ) + i sin ( 4 5 ) ) ] = 4 2 [ cos ( 3 0 ) cos ( 4 5 ) + sin ( 3 0 ) sin ( 4 5 ) i ( sin ( 3 0 ) cos ( 4 5 ) sin ( 4 5 ) cos ( 3 0 ) ) ] = 4 2 ( cos ( 1 5 ) i sin ( 1 5 ) ) = 4 2 ( cos ( 1 5 ) + i sin ( 1 5 ) ) \begin{aligned} wz &= \left[2\left(\cos(30^\circ) -i\sin(30^\circ)\right)\right] \left[2\sqrt{2}\left(\cos(45^\circ) + i\sin(45^\circ)\right)\right] \\ &= 4\sqrt{2}\left[\cos(30^\circ)\cos(45^\circ) + \sin(30^\circ)\sin(45^\circ) - i\left(\sin(30^\circ)\cos(45^\circ) - \sin(45^\circ)\cos(30^\circ)\right) \right] \\ &= 4\sqrt{2}\left(\cos(15^\circ) - i\sin(-15^\circ)\right) \\ &= 4\sqrt{2}\left(\cos(15^\circ) + i\sin(15^\circ)\right) \\ \end{aligned}

Hence r = 4 2 r = 4\sqrt{2} and a = 1 5 a = 15^\circ .

Solution 2: We have z = 2 2 ( cos 4 5 + i sin 4 5 ) z = 2\sqrt{2}\left(\cos 45^\circ + i\sin 45^\circ \right) and w = 2 ( cos ( 3 0 ) + i sin ( 3 0 ) ) w = 2\left(\cos(-30^\circ) +i\sin(-30^\circ)\right) . Applying Euler's formula, we have w z = ( 2 e i ( 3 0 ) ) ( 2 2 e i ( 4 5 ) ) = 4 2 ( e i ( 1 5 ) ) = 4 2 ( cos ( 1 5 ) + i sin ( 1 5 ) ) wz = \left(2e^{i(-30^\circ)}\right)\left(2\sqrt{2}e^{i(45^\circ)}\right) = 4\sqrt{2}\left(e^{i(15^\circ)}\right) = 4\sqrt{2}\left(\cos(15^\circ) + i\sin(15^\circ)\right) . Hence r = 4 2 r = 4\sqrt{2} and a = 1 5 a = 15 ^\circ .

Note: Students who initially multiplied z z and w w directly would be unable to proceed without knowing the value of sin 1 5 \sin 15^\circ and cos 1 5 \cos 15 ^ \circ .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...