Complex Angles

Algebra Level 3

There are four complex fourth roots to the number 4 4 3 i 4-4\sqrt{3}i . These can be expressed in polar form as

z 1 = r 1 ( cos θ 1 + i sin θ 1 ) z_1 = r_1\left(\cos \theta_1 +i\sin \theta_1 \right) z 2 = r 2 ( cos θ 2 + i sin θ 2 ) z_2 =r_2\left(\cos\theta_2+i\sin\theta_2\right) z 3 = r 3 ( cos θ 3 + i sin θ 3 ) z_3 = r_3\left(\cos\theta_3+i\sin\theta_3 \right) z 4 = r 4 ( cos θ 4 + i sin θ 4 ) , z_4 = r_4\left(\cos\theta_4+i\sin\theta_4\right),

where r i r_i is a real number and 0 θ i < 36 0 0^\circ \leq \theta_i < 360^\circ . What is the value of θ 1 + θ 2 + θ 3 + θ 4 \theta_1 + \theta_2 + \theta_3 + \theta_4 (in degrees)?

Details and assumptions

i i is the imaginary unit satisfying i 2 = 1 i^2=-1 .


The answer is 840.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

12 solutions

Sarah Sorlin
May 20, 2014

Draw the point 4-4sqrt(3)i on a diagram.

Use trig to see it makes an angle of 30 degrees with the negative y axis.

It's argument is therefore 270+30=300

Divide that by 4 to get the argument of one of the roots: 75

The 4th roots differ by 90 degrees, check that these are the arguments of a complete set of roots:

75 75+90 75+180 75+270

Then add them up to get the answer.

All submitted solutions were correct and essentially the same, with different terminology. This one is featured for being the most "geometric".

Calvin Lin Staff - 7 years ago
Cid Moraes
Dec 20, 2013

It is clear that z = 4 4 3 i = 8 ( cos 300 º + i sin 300 º ) z=4-4\sqrt3 i=8(\cos 300º + i \sin 300º) , so the first root is 8 4 ( cos 75 º + i sin 75 º ) \sqrt[4]{8}(\cos 75º + i \sin 75º) and the other ones are obtained by adding 90º to the argument. The desired sum is 75 + ( 75 + 90 ) + ( 75 + 2 90 ) + ( 75 + 3 90 ) = 840 75+(75+90)+(75+2\cdot 90)+(75+3\cdot90)=840

one can use De Moivre's theorm

Anirudha Nayak - 7 years, 5 months ago

Can you explain why one should add 9 0 90^\circ to obtain the other roots?

Jorge Tipe - 7 years, 5 months ago

Log in to reply

Because 360 4 = 90 \frac{360}{4} = 90 , as we need 4th roots.

Sai Nikhil Thirandas - 7 years, 5 months ago

Exactly how I did it! Nice solution.

Josh Kolenbrander - 7 years, 5 months ago
Jiayang Zhao
May 20, 2014

Let x = 4 4 3 i x = 4-4\sqrt{3}i

First, convert x x into polar form.

Magnitude = x = 4 2 + ( 4 3 ) 2 = 8 |x|=\sqrt{4^2+(4\sqrt{3})^2} = 8

Angle = tan 1 ( 4 3 4 ) = tan 1 ( 3 ) = 6 0 + 18 0 k \tan^{-1} (\frac{-4\sqrt{3}}{4}) = \tan^{-1}(-\sqrt{3}) = -60^\circ +180^\circ k , where k k is any integer. When graphed, x x lies in the fourth quadrant, therefore we know that the angle must be in the fourth quadrant. Thus the angle is 6 0 + 36 0 k -60^\circ+360^\circ k , and cannot be 12 0 + 36 0 k 120^\circ+360^\circ k , the tan \tan of which also happens to be 3 -\sqrt{3} .

Thus x = 8 ( cos ( 6 0 + 36 0 k ) + i sin ( 6 0 + 36 0 k ) ) = 8 c i s ( 6 0 + 36 0 k ) x = 8(\cos(-60^\circ+360^\circ k) + i\sin(-60^\circ+360^\circ k)) = 8cis(-60^\circ+360^\circ k)

To find the fourth roots of x x , we raise x x to the 1 4 \frac{1}{4} power. By De Moivre's theorem, we know that when taking a complex number in polar form to a power n n , we raise the magnitude to the n n th power, and we multiply the angle by n n .

Thus we have:

x 1 4 = 8 1 4 c i s ( 6 0 + 36 0 k 4 ) = 8 1 4 c i s ( 1 5 + 9 0 k ) x^{\frac{1}{4}} = 8^{\frac{1}{4}}cis(\frac{-60^\circ+360^\circ k}{4}) = 8^{\frac{1}{4}}cis(-15^\circ+90^\circ k)

We are only concerned with the sum of the angles, so all we must look for are the values of k k for which 0 1 5 + 9 0 k 36 0 0^\circ \leq -15^\circ+90^\circ k \leq 360^\circ

It is easy to see that the four k k s we need are 1, 2, 3, and 4. Thus our four angles are 7 5 , 16 5 , 25 5 , 34 5 75^\circ, 165^\circ, 255^\circ, 345^\circ . The sum of these is 840.

Kenneth Chan
May 20, 2014

The number 4 4 3 i 4-4\sqrt{3}i can be rewritten as 8 ( 1 2 3 2 i ) = r ( cos θ + i sin θ ) . 8(\frac{1}{2}-\frac{\sqrt{3}}{2}i) = r(\cos\theta + i\sin\theta).

Therefore, for θ \theta in the range 0 to 360, r = 8 , cos θ = 1 2 , sin θ = 3 2 θ = 30 0 r=8, \space\cos\theta = \frac{1}{2},\space \sin\theta = -\frac{\sqrt{3}}{2} \Longrightarrow \theta=300^\circ .

By DeMoivre's theorem, we see that: 4 4 3 i 4 = 8 4 ( cos θ + 36 0 k n + i sin θ + 36 0 k n ) \sqrt[4]{4-4\sqrt{3}i} = \sqrt[4]{8}(\cos\frac{\theta + 360^\circ k}{n} + i\sin\frac{\theta+360^\circ k}{n}) for k { 0 , 1 , 2 , 3 } k \in \{0,1,2,3\} .

Substituting 30 0 300^\circ for θ \theta , 4 4 for n n , and { 0 , 1 , 2 , 3 } \{0,1,2,3\} for k k , we get θ 1 + θ 2 + θ 3 + θ 4 = 7 5 + 16 5 + 25 5 + 34 5 = 84 0 . \theta_1+\theta_2+\theta_3+\theta_4 = 75^\circ + 165^\circ + 255^\circ + 345^\circ = \boxed{840^\circ}.

Vô Tình
May 20, 2014

First we see that 4 4 3 i = 8 ( cos ( π 3 + k 2 π ) + i sin ( π 3 + k 2 π ) ) 4-4\sqrt{3}i=8(\cos (\frac{-\pi}{3}+k2\pi ) +i \sin (\frac{-\pi}{3}+ k2\pi )) So i'ts easy to conclude that four complex fourth roots are z k = 8 4 ( cos ( π 12 + k π 2 ) + i sin ( π 12 + k π 2 ) , k = 1 , 2 , 3 , 4 z_k=\sqrt[4]{8}(\cos (\frac{-\pi}{12}+\frac{k\pi}{2})+ i\sin (\frac{-\pi}{12}+\frac{k\pi}{2}) , k=1,2,3,4 ( because 0 o θ k 36 0 o 0^o \leq \theta_k \leq 360^o

So θ 1 + θ 2 + θ 3 + θ 4 = 4. π 12 + π ( 1 + 2 + 3 + 4 ) 2 = 14 π 3 \theta_1+\theta_2+\theta_3+\theta_4= -4.\frac{\pi}{12}+ \frac{\pi(1+2+3+4)}{2} =\frac{14\pi}{3}

Or θ 1 + θ 2 + θ 3 + θ 4 = 14 3 . 18 0 o = 84 0 o \theta_1+\theta_2+\theta_3+\theta_4= \frac{14}{3}.180^o= 840^o degrees

Marcos Rodrigo
May 20, 2014

Let define cis \theta = \cos \theta + i\times \sin \theta

So, \sqrt[4]{4 - 4\sqrt{3}} = \sqrt[4]{8(\frac {1}{2} - \frac {\sqrt{3}}{2}} = = \sqrt[4]{8} \times + sqrt[4]{cis (300^\circ + n.360^\circ}.

But (cis \theta) ^ \alpha = (cis \theta \times\alpha)

So, using only the angular part, we have:

sqrt[4]{cis (300^\circ + n.360^\circ} = (cis (300^\circ + n.360^\circ))^(\frac {1}{4 }) = (cis (300^\circ \times (\frac {1}{4 })+ n.360^\circ) \times (\frac {1}{4 })) = {cis (75^\circ + n.90^\circ}

For n = 0, the first angle is 75^\circ For n = 1, the second angle is 75^\circ + 90^\circ = 165^\circ For n = 2, the third angle is 75^\circ + 180^\circ = 255^\circ For n = 3, the fouth angle is 75^\circ + 270^\circ = 345^\circ

and the sum os these angles are: 75^\circ +165^\circ + 255^\circ + 345^\circ = 840^\circ.

Tianbo Chen
May 20, 2014

Euler's Formula states that e^{i\theta} = \cos(\theta) + i \sin(\theta) We can use this to find roots of complex numbers. The nth roots of a complex number in the form e^{i\theta} are e^{\frac{\theta + 2k\pi}{n}} where k is 0,1,2,\dots$n-1. 4-4\sqrt{3}i can be rewritten as 8(\frac{1}{2} - \frac{\sqrt{3}}{2}i) \rightarrow 8e^{i300^{\circ}}. The 4th roots are thus \sqrt[4]{8}e^{i75^{\circ}}, \sqrt[4]{8}e^{i165^{\circ}}, \sqrt[4]{8}e^{i255^{\circ}}, \sqrt[4]{8}e^{i345^{\circ}}. 75+165+255+345 = 840

Ryan Carson
May 20, 2014

By plotting the complex number z = 4 4 3 z = 4 - 4\sqrt{3} we see that it rotates in a clockwise direction from the positive x axis.

This clockwise rotation is given by the negative argument a r g ( z ) tan 1 ( 4 3 4 ) = tan 1 ( 3 ) = 6 0 arg(z) \equiv -\tan^{-1} \left( \frac{4 \sqrt{3} }{4} \right) = -\tan^{-1}(\sqrt{3}) = -60^\circ .

Converting this to a positive (anti-clockwise) argument, we get a r g ( z ) = 360 60 = 30 0 arg (z) = 360 - 60 = 300^\circ .

As we are looking for the fourth roots of this complex number, any solution z i z_i must satisfy De Moivre's formula, specifically: z = z i 4 = r 4 [ cos ( 4 θ i ) + i sin ( 4 θ i ) ] z = z_i^{4} = r^{4} [ \cos (4 \theta_i) + i\sin (4 \theta_i) ]

(This can be seen be rewriting the complex numbers in exponential polar form, ie. r e i θ = r ( cos θ + i sin θ ) re^{i \theta} = r(\cos \theta + i \sin \theta ) and applying index laws).

Also, as complex roots are multi-valued, each of these arguments ( 4 θ i ) (4 \theta_i) need only be congruent to 30 0 ( m o d 360 ) 300^\circ \pmod{360} :

4 θ i 300 ( m o d 360 ) 4 θ i 300 + k × 360 where k Z 4 \theta_i \equiv 300 \pmod {360} \\ 4 \theta_i \equiv 300 + k \times 360 \text{ where } k \in \mathbb{Z} .

However as we only want solutions where 0 θ i < 36 0 0^\circ \leq \theta_i < 360^\circ we will only need to look at the 4 solutions given by k { 0 , 1 , 2 , 3 } k \in \{0,1,2,3\} .

Therefore 4 θ i = 30 0 , 66 0 , 102 0 , 138 0 θ i = 7 5 , 16 5 , 25 5 , 34 5 i = 1 4 θ i = 75 + 165 + 255 + 345 = 840 4 \theta_i = 300^\circ, 660^\circ, 1020^\circ, 1380^\circ \\ \theta_i = 75^\circ, 165^\circ, 255^\circ, 345^\circ \\ \sum_{i=1}^4 \theta_i = 75+165+255+345 = 840

4 ( 1 3 ) = 8 × ( 1 2 3 2 ) = 8 × e i × ( 2 k π + 5 π 3 ) = 8 × c i s ( 2 k π + 5 π 3 ) 4(1-\sqrt{3}) = 8 \times (\frac{1}{2}-\frac{\sqrt{3}}{2}) = 8 \times e^{i \times (2k\pi+\frac{5\pi}{3})} = 8 \times cis(2k\pi+\frac{5\pi}{3})

( 8 × c i s ( 2 k π + 5 π 3 ) ) 1 n = 8 1 n × c i s ( 2 k π + 5 π 3 n ) (8 \times cis(2k\pi+\frac{5\pi}{3}))^{\frac{1}{n}} = 8^{\frac{1}{n}} \times cis(\frac{2k\pi+\frac{5\pi}{3}}{n})

Here, n = 4 n = 4

For 0 < = θ i < = 2 π , 0 <= \theta_{i} <= 2\pi, we have,

0 < = 2 k π + 5 π 3 4 < = 2 π 0 <= \frac{2k\pi+\frac{5\pi}{3}}{4} <= 2\pi

Hence, 0 < = 2 k + 5 3 < = 8 0 <= 2k+\frac{5}{3} <= 8

0 < = k < = 19 / 6 0 <= k <= 19/6

Therefore, k = 0 , 1 , 2 , 3 k = 0, 1, 2, 3

θ 1 = 5 π 3 4 , θ 2 = 2 π + 5 π 3 4 , θ 3 = 4 π + 5 π 3 4 , θ 4 = 6 π + 5 π 3 4 \theta_{1} = \frac{\frac{5\pi}{3}}{4}, \theta_{2} = \frac{2\pi+\frac{5\pi}{3}}{4}, \theta_{3} = \frac{4\pi+\frac{5\pi}{3}}{4}, \theta_{4} = \frac{6\pi+\frac{5\pi}{3}}{4}

θ 1 + θ 2 + θ 3 + θ 4 = ( 3 + 5 3 ) π = 14 π 3 = 840 \theta_{1}+\theta_{2}+\theta_{3}+\theta_{4} = (3+\frac{5}{3})\pi = \frac{14\pi}{3} = 840

The number z = 4 4 3 i z = 4 - 4\sqrt{3}i can be written in polar form as z = 8 ( 1 2 + 3 2 ) z = 8 (\frac{1}{2} + -\frac{\sqrt{3}}{2}) , thus giving us the equation for its argument as

\begin{align} \cos{\theta} = \frac{1}{2}, \; \; \; \sin{\theta} = -\frac{\sqrt{3}}{2} \end{align}

Clearly θ = 30 0 \theta = 300^{\circ} .

The arguments of z 4 \sqrt[4]{z} can be written as 30 0 + 360 n 4 = 7 5 + 90 n \frac{300^{\circ} + 360n^{\circ}}{4} = 75^{\circ} + 90n^{\circ} , from n = 0 n = 0 to 3 3 .

Thus, the sum of all of them equals 4 × 7 5 + 6 × 9 0 = 84 0 . 4 \times 75^{\circ} + 6 \times 90^{\circ} = \boxed{840^{\circ}.}

First, we convert 4 4 3 i 4 - 4\sqrt3i to the exponential form \rightarrow 8 e 5 3 i π 8e^{\frac{5}{3}i\pi}

5 3 π \frac{5}{3}\pi is equivalent to 11 3 π \frac{11}{3}\pi , 17 3 π \frac{17}{3}\pi and 23 3 π \frac{23}{3}\pi .

The fourth root of e 5 3 i π = ( e 5 3 i π ) 1 4 = e 5 12 i π e^{\frac{5}{3}i\pi} = (e^{\frac{5}{3}i\pi})^{\frac{1}{4}} = e^{\frac{5}{12}i\pi} , and using the same method, the fourth roots of 11 3 π \frac{11}{3}\pi , 17 3 π \frac{17}{3}\pi and 23 3 π \frac{23}{3}\pi are e 11 12 i π e^{\frac{11}{12}i\pi} , e 17 12 i π e^{\frac{17}{12}i\pi} and e 23 12 i π e^{\frac{23}{12}i\pi} .

Converting the radians to degrees, the angles are 75, 165, 255 and 345. (there are more equivalent but these are the only four between 0 and 360).

75 + 165 + 255 + 345 = 840 75 + 165 + 255 + 345 = \boxed{840}

I think this is one solution, which to some extent, explains how we actually get the 4 angles.

Muhammad Shariq - 7 years, 4 months ago
Ajay Maity
Dec 23, 2013

Here, we need to calculate ( 4 4 3 i ) 1 4 (4 - 4\sqrt{3}i)^{\frac{1}{4}}

Write the complex number in polar form, i.e. writing a + i b a + ib in the form r e i θ re^{i\theta} where r = a 2 + b 2 r = \sqrt{a^{2} + b^{2}} and θ = tan b a \theta = \tan{\frac{b}{a}}

Hence, we need to calculate ( 8 e π / 3 ) 1 4 (8e^{-\pi/3})^{\frac{1}{4}}

Here, since only the angles are needed to be evaluated, we consider only the exponent term.

So, we have ( e π / 3 ) 1 4 (e^{-\pi/3})^{\frac{1}{4}}

Since it has 4 4 complex values, we multiply the term inside the bracket with e 2 π k e^{2\pi k} as its value is 1 1 , where k k goes from 0 0 to ( 4 1 ) (4 - 1) , i.e. 0 0 to 3 3 .

So, we have ( e π / 3 × e 2 π k ) 1 4 (e^{-\pi/3} \times e^{2\pi k})^{\frac{1}{4}}

( e π / 3 + 2 π k ) 1 4 (e^{-\pi/3 + 2\pi k})^{\frac{1}{4}}

Put different values of k k from 0 0 to 3 3 , we get

θ 1 = π 12 \theta 1 = \frac{-\pi}{12}

θ 2 = 5 π 12 \theta 2 = \frac{5\pi}{12}

θ 3 = 11 π 12 \theta 3 = \frac{11\pi}{12}

θ 4 = 17 π 12 \theta 4 = \frac{17\pi}{12}

It is given in the question that θ \theta lies between 0 o 0^{o} to 36 0 o 360^{o} , i.e. 0 0 radians to 2 π 2\pi radians.

Hence, we need to modify θ 1 \theta 1 . π 12 \frac{-\pi}{12} is equivalent to 2 π π 12 = 23 π 12 2\pi - \frac{\pi}{12} = \frac{23\pi}{12} . So, θ 1 = 23 π 12 \theta 1 = \frac{23\pi}{12}

Adding all the 4 4 θ \theta 's, we get the value

θ 1 + θ 2 + θ 3 + θ 4 = 56 π 12 \theta 1 + \theta 2 + \theta 3 + \theta 4 = \frac{56\pi}{12} radians = 56 × 180 12 = \frac{56 \times 180}{12} degrees.

= 840 = 840 degrees

That's the answer!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...