Complex Binomial !

Algebra Level 2

k = 1 999 ( 1998 2 k 1 ) ( 3 ) k = ? \large \displaystyle\sum_{k=1}^{999} \dbinom{1998}{2k-1} (-3)^k = ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Relevant wiki: Euler's Formula

Using binomial theorem ,

k = 0 2 n ( 2 n k ) x k = ( 1 + x ) 2 n k = 0 2 n ( 2 n k ) ( x ) k = ( 1 x ) 2 n k = 0 2 n ( 2 n k ) x k k = 0 2 n ( 2 n k ) ( x ) k = ( 1 + x ) 2 n ( 1 x ) 2 n 2 k = 1 n ( 2 n 2 k 1 ) x 2 k 1 = ( 1 + x ) 2 n ( 1 x ) 2 n 2 x k = 1 n ( 2 n 2 k 1 ) ( x 2 ) k = ( 1 + x ) 2 n ( 1 x ) 2 n k = 1 n ( 2 n 2 k 1 ) ( x 2 ) k = x 2 ( ( 1 + x ) 2 n ( 1 x ) 2 n ) Putting n = 999 , x = 3 i k = 1 999 ( 1998 2 k 1 ) ( 3 ) k = 3 2 i ( ( 1 + 3 i ) 1998 ( 1 3 i ) 1998 ) By Euler’s formula = 3 2 i ( 2 1998 ( e 1998 π 3 i e 1998 π 3 i ) ) = 3 2 1998 sin 666 π = 0 \begin{aligned} \sum_{k=0}^{2n} \binom {2n}k x^k & = (1+x)^{2n} \\ \sum_{k=0}^{2n} \binom {2n}k (-x)^k & = (1-x)^{2n} \\ \sum_{k=0}^{2n} \binom {2n}k x^k - \sum_{k=0}^{2n} \binom {2n}k (-x)^k & = (1+x)^{2n} - (1-x)^{2n} \\ 2 \sum_{k=1}^n \binom {2n}{2k-1} x^{2k-1} & = (1+x)^{2n} - (1-x)^{2n} \\ \frac 2x \sum_{k=1}^n \binom {2n}{2k-1} (x^2)^k & = (1+x)^{2n} - (1-x)^{2n} \\ \sum_{k=1}^n \binom {2n}{2k-1} (x^2)^k & = \frac x2 \left((1+x)^{2n} - (1-x)^{2n}\right) & \small \color{#3D99F6} \text{Putting }n = 999, x = \sqrt 3i \\ \sum_{k=1}^{999} \binom {1998}{2k-1} (-3)^k & = \frac {\sqrt 3}2i \color{#3D99F6} \left((1+\sqrt 3i)^{1998} - (1-\sqrt 3 i)^{1998}\right) & \small \color{#3D99F6} \text{By Euler's formula} \\ & = \frac {\sqrt 3}2 i \color{#3D99F6} \left(2^{1998}\left(e^{1998\cdot \frac \pi 3 i} - e^{-1998\cdot \frac \pi 3 i}\right) \right) \\ & = - \sqrt 3\cdot 2^{1998} \sin 666 \pi \\ & = \boxed{0} \end{aligned}

k = 1 999 ( 1998 2 k 1 ) ( 3 ) k = \displaystyle\sum_{k=1}^{999} \binom{1998}{2k-1} (-3)^k = Imaginary part of 3 ( 1 3 i ) 1998 = 0 \sqrt{3}(1-\sqrt{3}i)^{1998}=0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...