Complex-city 2

Algebra Level 1

i z 3 + z 2 z + i = 0 \large i{ z }^{ 3 }+z^{ 2 }-z+i=0

For i = 1 i = \sqrt{-1} , z z is a complex number that satisfies the equation above. What is the value of z \left| z \right| ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Shivamani Patil
Jul 12, 2015

i z 3 + z 2 z + i = i z 2 ( z i ) ( z i ) = ( i z 2 1 ) ( z i ) = 0 i{ z }^{ 3 }+z^{ 2 }-z+i=i{ z }^{ 2 }\left( z-i \right) -\left( z-i \right) =\left( i{ z }^{ 2 }-1 \right) \left( z-i \right) =0

Case 1 : 1:

z = i z = 1 z=i\Rightarrow \left| z \right| =1

Case 2 : 2:

i z 2 = 1 z 2 = i i{ z }^{ 2 }=1\Rightarrow { z }^{ 2 }=-i

z 2 = 0 2 + ( 1 ) 2 = 1 \Rightarrow \left| { z }^{ 2 } \right| =\sqrt { { 0 }^{ 2 }+{ (-1) }^{ 2 } } =1

z = 1 \Rightarrow \left| z \right| =1 .

In both cases z = 1. \left| z \right| =1.\square

I solved it it the cube root of 1 way but I must say the problem is amazing!

Titas Biswas - 5 years, 10 months ago

Log in to reply

for quadratic ??, Cube root ?? is it possible for other cases ?

Himanshu Yeole - 5 years, 7 months ago

Thank you.

shivamani patil - 5 years, 10 months ago

z = i can you tell me how you calculated absolute z = 1 ?

Hussein Labib - 5 years, 11 months ago

Log in to reply

z = i = 0 + 1 i z=i=0+1i therefore z = 0 2 + 1 2 |z|=\sqrt { { 0 }^{ 2 }+{ 1 }^{ 2 } } . Absolute value of complex number is defined as a 2 + b 2 \sqrt { { a }^{ 2 }+{ b }^{ 2 } } where a , b a,b are real and imaginary parts of complex number.

shivamani patil - 5 years, 11 months ago

Log in to reply

thank you for explaining it to me

Hussein Labib - 5 years, 10 months ago

I agree. Z = i

If Z=1 --> i(1)^3+(1)^2-(1)+i= i+1-1+i= 2i

Exponent Bot
Mar 27, 2018

This is a different way to factor it. I got the same answer.

Link Explaining Square Root of i: https://www.math.toronto.edu/mathnet/questionCorner/rootofi.html

Exponent Bot - 3 years, 2 months ago

Good approach factotization

Kumar Krish - 2 years, 5 months ago
Prabhnoor Singh
Mar 20, 2020

i z 3 + i z 2 z + i = 0 iz^3+iz^2-z+i=0

i z 2 ( z i ) ( z i ) = 0 iz^2(z-i)-(z-i)=0

Taking z i z-i common,

( z i ) ( i z 2 1 ) = 0 (z-i)(iz^2-1)=0

Either z = i z=i or i z 2 = 1 iz^2=1

i z 2 = 1 iz^2=1

z 2 = 1 i = i z^2=\frac{1}{i}=-i

Solving it, we get

z = ± 1 i 2 z=\pm\frac{1-i}{\sqrt{2}}

In both cases, z = 1 |z|=1

Hence z = 1 |z|=1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...