Complex City

Algebra Level 5

If x 6 = 2 x 3 1 x^{6}=2x^{3}-1 and x x is not real , then find the value of r = 1 50 ( x r + x 2 r ) 3 \displaystyle\sum_{r=1}^{50}(x^{r}+x^{2r})^{3} .


The answer is 94.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

x 6 2 x 3 + 1 = 0 ( x 3 1 ) 2 = 0 x 3 = 1 r = 1 50 ( x r + x 2 r ) 3 = r = 1 50 x 3 r ( 1 + x r ) 3 b e c a u s e x 3 = 1 , r = 1 50 x 3 r ( 1 + x r ) 3 = r = 1 50 ( 1 + x r ) 3 = r = 1 50 1 + 3 x r + 3 x 2 r + x 3 r = r = 1 50 1 + r = 1 50 3 x r + r = 1 50 3 x 2 r + r = 1 50 1 = 50 + 3 x ( x 50 1 ) x 1 + 3 x 2 ( x 100 1 ) x 2 1 + 50 = 50 + 3 × x 51 x x 1 + 3 × x 102 x 2 x 2 1 + 50 = 50 + 3 × 1 x x 1 + 3 × 1 x 2 x 2 1 + 50 b e c a u s e x 3 = 1 = 50 3 3 + 50 = 94 { x }^{ 6 }-2{ x }^{ 3 }+1=0\\ { ({ x }^{ 3 }-1) }^{ 2 }=0\\ { x }^{ 3 }=1\\ \\ \\ \\ \sum _{ r=1 }^{ 50 }{ { ({ x }^{ r }+{ x }^{ 2r } })^{ 3 } } =\sum _{ r=1 }^{ 50 }{ { { x }^{ 3r }(1+{ x }^{ r } })^{ 3 } } \\ \\ because\quad { x }^{ 3 }=1,\quad \sum _{ r=1 }^{ 50 }{ { { x }^{ 3r }(1+{ x }^{ r } })^{ 3 } } =\sum _{ r=1 }^{ 50 }{ { (1+{ x }^{ r } })^{ 3 } } \\ \\ =\sum _{ r=1 }^{ 50 }{ 1+3 } { x }^{ r }+3{ x }^{ 2r }+{ x }^{ 3r }=\sum _{ r=1 }^{ 50 }{ 1 } +\sum _{ r=1 }^{ 50 }{ 3 } { x }^{ r }+\sum _{ r=1 }^{ 50 }{ 3{ x }^{ 2r } } +\sum _{ r=1 }^{ 50 }{ 1 } \quad \\ \\ =\quad 50+\quad 3\frac { x({ x }^{ 50 }-1) }{ x-1 } +\quad 3\frac { { x }^{ 2 }({ x }^{ 100 }-1) }{ { x }^{ 2 }-1 } +\quad 50\quad =50+\quad 3\times \frac { { x }^{ 51 }-x }{ x-1 } +\quad 3\times \frac { { x }^{ 102 }-{ x }^{ 2 } }{ { x }^{ 2 }-1 } +\quad 50\\ \\ =\quad 50+\quad 3\times \frac { 1-x }{ x-1 } +\quad 3\times \frac { 1-{ x }^{ 2 } }{ { x }^{ 2 }-1 } +\quad 50\quad \Leftarrow because\quad { x }^{ 3 }=1\\ \\ =50-3-3+50=94\\

First we rewrite the equation as ( x 3 1 ) 2 = 0 (x^3 - 1)^2 = 0 . This implies that x 3 = 1 x^3 = 1 . Because x x is not real, x x must be one of the cube roots of unity: x = ω or ω ˉ , x = \omega\ \text{or}\ \bar\omega, where ω = e 2 π i / 3 = 1 2 ± 1 2 3 i \omega = e^{2\pi i/3} = -\tfrac12 \pm \tfrac12\sqrt 3 i . Note that ω 2 = ω ˉ \omega^2 = \bar\omega and vice versa.

Now if r = 3 s r = 3s is a multiple of 3, then x r + x 2 r = ( ω 3 ) s + ( ω ˉ 3 ) s = 1 s + 1 s = 2 x^r + x^{2r} = (\omega^3)^s + (\bar\omega^3)^s = 1^s + 1^s = 2 .

But if r r is not a multiple of 3, then x r + x 2 r = ω + ω ˉ = 2 Re ω = 1 x^r + x^{2r} = \omega + \bar\omega = 2\text{Re}\ \omega = -1 .

In the range r = 1 50 r = 1\dots50 , we have 16 terms where r r is a multiple of 3, and 34 other terms. Thus the answer is 16 2 3 + 34 ( 1 ) 3 = 128 34 = 94 . 16\cdot 2^3 + 34\cdot (-1)^3 = 128 - 34 = \boxed{94}.

Shivam Jadhav
Jul 13, 2015

Use the below thing to get the answer x 3 = 1 ; x = ω , ω 2 . x^{3}=1; x=ω,ω^{2}. x r + x 2 r = 2 ; x^{r}+x^{2r}=2 ; if r is a multiple of 3. x r + x 2 r = 1 ; x^{r}+x^{2r}=-1; if r is not a multiple of 3

suplex city? :)

Xuming Liang - 5 years, 11 months ago

Log in to reply

Yeah, lesner!!

siddharth bhatt - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...