Complex-city

Algebra Level 3

Z 1 Z 2 Z 1 + Z 2 \large \left| \frac { { Z }_{ 1 }-{ Z }_{ 2 } }{ { Z }_{ 1 }+{ Z }_{ 2 } } \right|

If Z 1 , Z 2 { Z }_{ 1 },{ Z }_{ 2 } are complex numbers such that 2 Z 1 3 Z 2 \frac { { 2Z }_{ 1 } }{ { 3Z }_{ 2 } } is purely imaginary then what is the value of above expression?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Tijmen Veltman
Jun 30, 2015

We write 2 Z 1 3 Z 2 = a i \frac{2Z_1}{3Z_2}=ai (where a R a\in\mathbb{R} ), i.e. Z 1 = 3 2 a i Z 2 Z_1=\frac32aiZ_2 :

Z 1 Z 2 Z 1 + Z 2 \left|\frac{Z_1-Z_2}{Z_1+Z_2}\right|

= 3 2 a i Z 2 Z 2 3 2 a i Z 2 + Z 2 =\left|\frac{\frac32aiZ_2-Z_2}{\frac32aiZ_2+Z_2}\right|

= 3 2 a i 1 3 2 a i + 1 =\frac{|\frac32ai-1|}{|\frac32ai+1|}

= ( 3 2 a ) 2 + ( 1 ) 2 ( 3 2 a ) 2 + ( 1 ) 2 =\frac{\sqrt{\left(\frac32a\right)^2+(1)^2}}{\sqrt{\left(\frac32a\right)^2+(1)^2}}

= 1 . =\boxed{1}.

Aakash Khandelwal
Oct 16, 2015

Take 2/3* z1/z2 as ic

mod(z1-z2/z1+z2) = mod(-1+i*1.5c)/mod(1+i1.5c) = 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...