Complex Condensation

Algebra Level 3

Given the following:

A = A e j θ A B = B e j θ B C = C e j θ C D = D e j θ D E = E e j θ E A + B + C = D + E A + B + C = D + E \vec{A} = A \, e^{j \theta_A} \\ \vec{B} = B \, e^{j \theta_B} \\ \vec{C} = C \, e^{j \theta_C} \\ \vec{D} = D \, e^{j \theta_D} \\ \vec{E} = E \, e^{j \theta_E} \\ |\vec{A}| + |\vec{B}| + |\vec{C}| = |\vec{D}| + |\vec{E}| \\ \vec{A} + \vec{B} + \vec{C} = \vec{D} + \vec{E}

Determine the value of D D

Details and Assumptions:
1) j = 1 j = \sqrt{-1}
2) ( A , B , C , D , E ) = ( 1 , 2 , 3 , ? , ? ) (A,B,C,D,E) = (1,2,3,?,?)
3) ( θ A , θ B , θ C , θ D , θ E ) = ( π 6 , π 4 , π 3 , 0 , ? ) (\theta_A,\theta_B,\theta_C, \theta_D, \theta_E) = (\frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, 0, ?)
4) |\cdot| denotes the magnitude of a complex number


The answer is 0.30387.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Nick Kent
Aug 10, 2019

Since e j θ = 1 \left| { e }^{ j\cdot \theta } \right| =1 for any θ \theta , the magnitudes are easily found: A = A = 1 , B = B = 2 , C = C = 3 , D = D , E = E \left| \overrightarrow { A } \right| =A=1,\left| \overrightarrow { B } \right| =B=2,\left| \overrightarrow { C } \right| =C=3,\left| \overrightarrow { D } \right| =D,\left| \overrightarrow { E } \right| =E . That means:

A + B + C = D + E 1 + 2 + 3 = D + E D + E = 6 \left| \overrightarrow { A } \right| +\left| \overrightarrow { B } \right| +\left| \overrightarrow { C } \right| =\left| \overrightarrow { D } \right| +\left| \overrightarrow { E } \right| \\ 1+2+3=D+E\\ D+E=6

Knowing that r e j θ = r cos θ + j r sin θ r{ e }^{ j\theta }=r\cos { \theta } +jr\sin { \theta } we can separate the real and imaginary parts of the last equation:

{ A cos θ A + B cos θ B + C cos θ C = D cos θ D + E cos θ E A sin θ A + B sin θ B + C sin θ C = D sin θ D + E sin θ E \begin{cases} A\cos { { \theta }_{ A } } +B\cos { { \theta }_{ B } } +C\cos { { \theta }_{ C } } =D\cos { { \theta }_{ D } } +E\cos { { \theta }_{ E } } \\ A\sin { { \theta }_{ A } } +B\sin { { \theta }_{ B } } +C\sin { { \theta }_{ C } } =D\sin { { \theta }_{ D } } +E\sin { { \theta }_{ E } } \end{cases}

Enter the values:

{ 1 cos π 6 + 2 cos π 4 + 3 cos π 3 = D cos 0 + E cos θ E 1 sin π 6 + 2 sin π 4 + 3 sin π 3 = D sin 0 + E sin θ E { 3 2 + 2 2 2 + 3 1 2 = D + E cos θ E 1 2 + 2 2 2 + 3 3 2 = 0 + E sin θ E { 3 2 + 2 + 3 2 = D + E cos θ E 1 2 + 2 + 3 3 2 = E sin θ E \begin{cases} 1\cos { \frac { \pi }{ 6 } } +2\cos { \frac { \pi }{ 4 } } +3\cos { \frac { \pi }{ 3 } } =D\cos { 0 } +E\cos { { \theta }_{ E } } \\ 1\sin { \frac { \pi }{ 6 } } +2\sin { \frac { \pi }{ 4 } } +3\sin { \frac { \pi }{ 3 } } =D\sin { 0 } +E\sin { { \theta }_{ E } } \end{cases}\\ \begin{cases} \frac { \sqrt { 3 } }{ 2 } +2\cdot \frac { \sqrt { 2 } }{ 2 } +3\cdot \frac { 1 }{ 2 } =D+E\cos { { \theta }_{ E } } \\ \frac { 1 }{ 2 } +2\cdot \frac { \sqrt { 2 } }{ 2 } +3\cdot \frac { \sqrt { 3 } }{ 2 } =0+E\sin { { \theta }_{ E } } \end{cases}\\ \begin{cases} \frac { \sqrt { 3 } }{ 2 } +\sqrt { 2 } +\frac { 3 }{ 2 } =D+E\cos { { \theta }_{ E } } \\ \frac { 1 }{ 2 } +\sqrt { 2 } +\frac { 3\sqrt { 3 } }{ 2 } =E\sin { { \theta }_{ E } } \end{cases}

Let u = 3 2 + 2 + 3 2 u=\frac { \sqrt { 3 } }{ 2 } +\sqrt { 2 } +\frac { 3 }{ 2 } and v = 1 2 + 2 + 3 3 2 v=\frac { 1 }{ 2 } +\sqrt { 2 } +\frac { 3\sqrt { 3 } }{ 2 } . Then:

{ D + E cos θ E = u E sin θ E = v { E cos θ E = u D E sin θ E = v { E 2 cos 2 θ E = ( u D ) 2 E 2 sin 2 θ E = v 2 \begin{cases} D+E\cos { { \theta }_{ E } } =u \\ E\sin { { \theta }_{ E } } =v \end{cases}\\ \begin{cases} E\cos { { \theta }_{ E } } =u-D \\ E\sin { { \theta }_{ E } } =v \end{cases}\\ \begin{cases} { E }^{ 2 }\cdot \cos ^{ 2 }{ { \theta }_{ E } } ={ \left( u-D \right) }^{ 2 } \\ { E }^{ 2 }\cdot \sin ^{ 2 }{ { \theta }_{ E } } ={ v }^{ 2 } \end{cases}

Let's sum the equations:

E 2 = ( u D ) 2 + v 2 ( 6 D ) 2 = ( u D ) 2 + v 2 36 12 D + D 2 = u 2 2 u D + D 2 + v 2 ( 12 2 u ) D = 36 u 2 v 2 D = 36 u 2 v 2 12 2 u { E }^{ 2 }={ \left( u-D \right) }^{ 2 }+{ v }^{ 2 }\\ { \left( 6-D \right) }^{ 2 }={ \left( u-D \right) }^{ 2 }+{ v }^{ 2 }\\ 36-12D+{ D }^{ 2 }={ u }^{ 2 }-2uD+{ D }^{ 2 }+{ v }^{ 2 }\\ \left( 12-2u \right) D=36-{ u }^{ 2 }-{ v }^{ 2 }\\ D=\frac { 36-{ u }^{ 2 }-{ v }^{ 2 } }{ 12-2u }

Now we can evaluate D D :

D = 36 u 2 v 2 12 2 u = 36 ( 3 2 + 2 + 3 2 ) 2 ( 1 2 + 2 + 3 3 2 ) 2 12 2 ( 3 2 + 2 + 3 2 ) = 36 3 4 2 9 4 3 2 3 3 2 3 2 1 4 2 27 4 2 3 3 3 3 2 12 3 2 2 6 = 22 4 2 3 3 4 6 9 2 2 3 D=\frac { 36-{ u }^{ 2 }-{ v }^{ 2 } }{ 12-2u } =\frac { 36-{ \left( \frac { \sqrt { 3 } }{ 2 } +\sqrt { 2 } +\frac { 3 }{ 2 } \right) }^{ 2 }-{ \left( \frac { 1 }{ 2 } +\sqrt { 2 } +\frac { 3\sqrt { 3 } }{ 2 } \right) }^{ 2 } }{ 12-2\left( \frac { \sqrt { 3 } }{ 2 } +\sqrt { 2 } +\frac { 3 }{ 2 } \right) } =\frac { 36-\frac { 3 }{ 4 } -2-\frac { 9 }{ 4 } -\sqrt { 3 } \sqrt { 2 } -\frac { 3\sqrt { 3 } }{ 2 } -3\sqrt { 2 } -\frac { 1 }{ 4 } -2-\frac { 27 }{ 4 } -\sqrt { 2 } -3\sqrt { 3 } -3\sqrt { 3 } \sqrt { 2 } }{ 12-\sqrt { 3 } -2\sqrt { 2 } -6 } =\frac { 22-4\sqrt { 2 } -3\sqrt { 3 } -4\sqrt { 6 } }{ 9-2\sqrt { 2 } -\sqrt { 3 } }

So the answer is D = 0.30387 D=\boxed { 0.30387 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...