Complex Cosine

Algebra Level 4

The equation cos ( z ) = 4 \cos { (z) }=4 has two solutions, where z z is purely imaginary.

If the expression e z / i \large \displaystyle{ e }^{ z / i } can be expressed in simplest form as a ± b a \pm \sqrt { b } , where b b is square-free, find the value of a + b a+b .


The answer is 19.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Anthony Muleta
Jan 6, 2015

By Euler's formula, e i z = cos ( z ) + i sin ( z ) { e }^{ iz }=\cos { (z) } +i\sin { (z) } .

e i z = cos ( z ) i sin ( z ) e i z + e i z = 2 cos ( z ) cos ( z ) = e i z + e i z 2 . \Rightarrow { e }^{ -iz }=\cos { (z) } -i\sin { (z) } \\ \Rightarrow { e }^{ iz }+{ e }^{ -iz }=2\cos { (z) } \\ \Rightarrow \cos { (z)=\frac { { e }^{ iz }+{ e }^{ -iz } }{ 2 } . }

Hence, e i z + e i z 2 = 4 e i z + e i z = 8 \frac { { e }^{ iz }+{ e }^{ -iz } }{ 2 } =4\\ \Rightarrow { e }^{ iz }+{ e }^{ -iz }=8\quad

Multiplying through by e i z { e }^{ iz } yields e 2 i z 8 e i z + 1 = 0 { e }^{ 2iz }-8{ e }^{ iz }+1=0 , which is a quadratic in e i z { e }^{ iz} . Solving this quadratic (by the quadratic formula or completing square) gives the two solutions z = i log e ( 4 ± 15 ) z=-i\log _{ e }{ (4\pm \sqrt { 15 } ) } .

Now, the expression e z i = e log e ( 4 ± 15 ) = e log e ( 4 ± 15 ) 1 = 1 4 ± 15 = 4 15 { e }^{ \frac { z }{ i } }={ e }^{ -\log _{ e }{ (4\pm \sqrt { 15 } ) } }\\ \qquad ={ e }^{ \log _{ e }{ { (4\pm \sqrt { 15 } ) }^{ -1 } } }\\ \qquad =\frac { 1 }{ 4\pm \sqrt { 15 } } \\ \qquad =4\mp \sqrt { 15 } .

Hence, a = 4 , b = 15 a=4, b=15 and a + b = 19 . a+b=\boxed { 19 }.

Good solution but there's just one flaw.

It's not De Moivre's theorem that tells you e i z = cos ( z ) + i sin ( z ) e^{iz} = \cos(z)+i\sin(z) . this is Euler's formula .


De Moivre's theorem is something completely different, it tells us that

( cos ( x ) + i sin ( x ) ) n = cos ( n x ) + i sin ( n x ) \bigl(\cos(x)+i\sin(x)\bigr) ^n = \cos (nx) + i \sin(nx)

Please note for future reference.

Aditya Raut - 6 years, 5 months ago

Log in to reply

Thank you for pointing that out, I confuse the two often. I've updated it :)

Anthony Muleta - 6 years, 5 months ago
Akul Agrawal
Oct 26, 2015

Let z=ir because it's given that it is pure imaginary i= 1 \sqrt { -1 }

cos(ir)=4 , sin(ir)= ± 15 i \pm \sqrt { 15 } i [ c o s 2 x + s i n 2 x = 1 { cos }^{ 2 }x+{ sin }^{ 2 }x=1 ]

\Rightarrow cos(ir)+isin(ir)=4 15 \mp \sqrt { 15 }

\Rightarrow e i ( i r ) { e }^{ i\ast (ir) } =4 15 \mp \sqrt { 15 }

\Rightarrow e r { e }^{ -r } =4 15 \mp \sqrt { 15 }

Now, e i r i { e }^{ \frac { ir }{ i } } = e r { e }^{ r } = 1 4 15 = 4 ± 15 \frac { 1 }{ 4\mp \sqrt { 15 } } =4\pm \sqrt { 15 }

Ravi Dwivedi
Jul 16, 2015

There are more solutions

z = i log ( 4 ± 15 ) + 2 π k z=-i\log(4 \pm \sqrt{15})+ 2 \pi k for k = 0 , ± 1 , ± 2 , . . . . k=0,\pm 1,\pm 2,....

Thanks. I have updated the problem accordingly.

Calvin Lin Staff - 5 years, 11 months ago

Log in to reply

What have u updated? I think its the same

Ravi Dwivedi - 5 years, 11 months ago

Log in to reply

It states that z z is purely imaginary, and so k = 0 k = 0 .

Calvin Lin Staff - 5 years, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...