Complex equality

Algebra Level 4

5 2 + x 3 + 5 2 x 3 3 = 2 \large \sqrt[3]{ \sqrt[3]{5 \sqrt{2} + x} + \sqrt[3]{5 \sqrt{2} - x} } = \sqrt{2}

Find the positive real number x x satisfying the equation above.


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Chew-Seong Cheong
May 30, 2017

5 2 + x 3 + 5 2 x 3 3 = 2 Cubing both sides 5 2 + x 3 + 5 2 x 3 = 2 2 Cubing again 5 2 + x + 3 ( 5 2 + x ) ( 5 2 x ) 3 ( 5 2 + x 3 + 5 2 x 3 ) + 5 2 x = 16 2 10 2 + 3 50 x 2 3 ( 2 2 ) = 16 2 50 x 2 3 = 1 Cubing again 50 x 2 = 1 x 2 = 49 x = ± 7 \begin{aligned} \sqrt[3]{\sqrt[3]{5\sqrt2+x}+\sqrt[3]{5\sqrt2-x}} & = \sqrt 2 & \small \color{#3D99F6} \text{Cubing both sides} \\ \sqrt[3]{5\sqrt2+x}+\sqrt[3]{5\sqrt2-x} & = 2 \sqrt 2 & \small \color{#3D99F6} \text{Cubing again} \\ 5\sqrt2 + x + 3\sqrt[3]{\left(5\sqrt2+x\right) \left(5\sqrt2-x\right)}\left({\color{#3D99F6}\sqrt[3]{5\sqrt2+x}+\sqrt[3]{5\sqrt2-x}}\right) +5\sqrt2-x & = 16 \sqrt 2 \\ 10\sqrt2 + 3\sqrt[3]{50-x^2}\left({\color{#3D99F6}2\sqrt 2}\right) & = 16 \sqrt 2 \\ \sqrt[3]{50-x^2} & = 1 & \small \color{#3D99F6} \text{Cubing again} \\ 50-x^2 & = 1 \\ x^2 & = 49 \\ \implies x & = \pm 7 \end{aligned}

And the answer is x = 7 x = \boxed{7} .

Tapas Mazumdar
Jun 4, 2017

Let U = 5 2 + x 3 U = \sqrt[3] {5\sqrt{2} +x} and V = 5 2 x 3 V = \sqrt[3] {5\sqrt{2} -x} .

We observe that

U 3 + V 3 = 10 2 U V = 50 x 2 3 \begin{aligned} & U^3 + V^3 = 10 \sqrt{2} \\ & UV = \sqrt[3] {50 - x^2} \end{aligned}

Using the formula x 3 + y 3 = ( x + y ) 3 3 x y ( x + y ) x^3 + y^3 = (x+y)^3 - 3xy (x+y) , we get

U 3 + V 3 = 10 2 ( U + V ) 3 3 U V ( U + V ) = 10 2 ( U + V ) 3 3 50 x 2 3 ( U + V ) = 10 2 \begin{aligned} & U^3 + V^3 = 10 \sqrt{2} \\ \implies & (U+V)^3 - 3UV (U+V) = 10 \sqrt{2} \\ \implies & (U+V)^3 - 3 \sqrt[3] {50-x^2} (U+V) = 10 \sqrt{2} \end{aligned}

From the given equality

5 2 + x 3 + 5 2 x 3 3 = 2 \sqrt[3]{ \sqrt[3]{5 \sqrt{2} + x} + \sqrt[3]{5 \sqrt{2} - x} } = \sqrt{2}

We have that

U + V 3 = 2 U + V = 2 3 / 2 \sqrt[3] {U+V} = \sqrt{2} \implies U+V = 2^{{3}/{2}}

Thus

( U + V ) 3 3 50 x 2 3 ( U + V ) = 10 2 2 9 / 2 3 50 x 2 3 2 3 / 2 = 10 2 1 / 2 2 4 3 50 x 2 3 2 = 10 6 50 x 2 3 = 6 50 x 2 = 1 3 x 2 = 49 x = ± 7 \begin{aligned} & (U+V)^3 - 3 \sqrt[3] {50-x^2} (U+V) = 10 \sqrt{2} \\ \implies & 2^{{9}/{2}} - 3 \sqrt[3] {50-x^2} \cdot 2^{{3}/{2}} = 10 \cdot 2^{{1}/{2}} \\ \implies & 2^4 - 3 \sqrt[3] {50-x^2} \cdot 2 = 10 \\ \implies & 6 \sqrt[3] {50-x^2} = 6 \\ \implies & 50-x^2 = 1^3 \\ \implies & x^2 = 49 \\ \implies & x = \pm 7 \end{aligned}

So the positive value of x x would be x = 7 \boxed{x=7} .

Ayush Sharma
Jun 4, 2017

Christopher Boo
Jul 9, 2017

Manipulating the equation we have

5 2 + x 3 + 5 2 x 3 3 = 2 5 2 + x 3 + 5 2 x 3 = 2 2 5 2 + x 3 + 5 2 x 3 2 2 = 0 \begin{aligned} \sqrt[3]{\sqrt[3]{5\sqrt{2}+x} + \sqrt[3]{5\sqrt{2}-x}} &= \sqrt{2} \\ \sqrt[3]{5\sqrt{2}+x} + \sqrt[3]{5\sqrt{2}-x} &= 2\sqrt{2} \\ \sqrt[3]{5\sqrt{2}+x} + \sqrt[3]{5\sqrt{2}-x} - 2\sqrt{2} &= 0 \end{aligned}

Using the identity a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) a^3+b^3+c^3-3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca) , when a + b + c = 0 a+b+c=0 we have a 3 + b 3 + c 3 3 a b c = 0 a^3+b^3+c^3-3abc=0 .

Let a = 5 2 + x 3 , b = 5 2 x 3 , c = 2 2 a=\sqrt[3]{5\sqrt{2}+x}, b=\sqrt[3]{5\sqrt{2}-x} , c=-2\sqrt{2} , we have

a 3 + b 3 + c 3 3 a b c = 0 ( 5 2 + x ) + ( 5 2 x ) 16 2 + 6 2 ( ( 5 2 + x ) ( 5 2 x ) 3 ) = 0 6 2 ( 50 x 2 3 1 ) = 0 50 x 2 3 1 = 0 50 x 2 3 = 1 50 x 2 = 1 x 2 = 49 x = ± 7 \begin{aligned} a^3+b^3+c^3-3abc &= 0 \\ (5\sqrt{2}+x)+(5\sqrt{2}-x) -16\sqrt{2} + 6\sqrt{2}\big( \sqrt[3]{(5\sqrt{2}+x)(5\sqrt{2}-x)}\big )&= 0 \\ 6\sqrt{2} \big ( \sqrt[3]{50-x^2} - 1\big) &= 0 \\ \sqrt[3]{50-x^2} - 1 &= 0 \\ \sqrt[3]{50-x^2} &= 1 \\ 50-x^2 &= 1 \\ x^2 &= 49 \\ x &= \pm 7 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...