3 3 5 2 + x + 3 5 2 − x = 2
Find the positive real number x satisfying the equation above.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let U = 3 5 2 + x and V = 3 5 2 − x .
We observe that
U 3 + V 3 = 1 0 2 U V = 3 5 0 − x 2
Using the formula x 3 + y 3 = ( x + y ) 3 − 3 x y ( x + y ) , we get
⟹ ⟹ U 3 + V 3 = 1 0 2 ( U + V ) 3 − 3 U V ( U + V ) = 1 0 2 ( U + V ) 3 − 3 3 5 0 − x 2 ( U + V ) = 1 0 2
From the given equality
3 3 5 2 + x + 3 5 2 − x = 2
We have that
3 U + V = 2 ⟹ U + V = 2 3 / 2
Thus
⟹ ⟹ ⟹ ⟹ ⟹ ⟹ ( U + V ) 3 − 3 3 5 0 − x 2 ( U + V ) = 1 0 2 2 9 / 2 − 3 3 5 0 − x 2 ⋅ 2 3 / 2 = 1 0 ⋅ 2 1 / 2 2 4 − 3 3 5 0 − x 2 ⋅ 2 = 1 0 6 3 5 0 − x 2 = 6 5 0 − x 2 = 1 3 x 2 = 4 9 x = ± 7
So the positive value of x would be x = 7 .
Manipulating the equation we have
3 3 5 2 + x + 3 5 2 − x 3 5 2 + x + 3 5 2 − x 3 5 2 + x + 3 5 2 − x − 2 2 = 2 = 2 2 = 0
Using the identity a 3 + b 3 + c 3 − 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a ) , when a + b + c = 0 we have a 3 + b 3 + c 3 − 3 a b c = 0 .
Let a = 3 5 2 + x , b = 3 5 2 − x , c = − 2 2 , we have
a 3 + b 3 + c 3 − 3 a b c ( 5 2 + x ) + ( 5 2 − x ) − 1 6 2 + 6 2 ( 3 ( 5 2 + x ) ( 5 2 − x ) ) 6 2 ( 3 5 0 − x 2 − 1 ) 3 5 0 − x 2 − 1 3 5 0 − x 2 5 0 − x 2 x 2 x = 0 = 0 = 0 = 0 = 1 = 1 = 4 9 = ± 7
Problem Loading...
Note Loading...
Set Loading...
3 3 5 2 + x + 3 5 2 − x 3 5 2 + x + 3 5 2 − x 5 2 + x + 3 3 ( 5 2 + x ) ( 5 2 − x ) ( 3 5 2 + x + 3 5 2 − x ) + 5 2 − x 1 0 2 + 3 3 5 0 − x 2 ( 2 2 ) 3 5 0 − x 2 5 0 − x 2 x 2 ⟹ x = 2 = 2 2 = 1 6 2 = 1 6 2 = 1 = 1 = 4 9 = ± 7 Cubing both sides Cubing again Cubing again
And the answer is x = 7 .