Complex Equations

Algebra Level 4

( 2 3 i ) z + ( 5 + i ) w = 19 4 i ( 1 i ) z + ( 2 + i ) w = 9 i \begin{aligned} (2-3i)z + (5+i)w &= 19-4i\\ (1-i)z + (2+i)w &= 9-i \end{aligned}

Let z z and w w be the complex numbers satisfying the equations above.

Compute z + w 2 |z+w|^2 .

Note : i 2 = 1 i^2 = -1 , and z |z| is the absolute value of z z .


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Relevant wiki: Solving Linear Systems Using Matrices

We can rewrite the system of equations as the product of matrices as shown below:

[ 2 3 i 5 + i 1 i 2 + i ] [ z w ] = [ 19 4 i 9 i ] \begin{bmatrix} 2-3i & 5+i \\ 1-i & 2+i \end{bmatrix} \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 19-4i \\ 9-i \end{bmatrix}

Let A = [ 2 3 i 5 + i 1 i 2 + i ] A = \begin{bmatrix} 2-3i & 5+i \\ 1-i & 2+i \end{bmatrix} . Then det ( A ) = ( 2 3 i ) ( 2 + i ) ( 5 + i ) ( 1 i ) = ( 7 4 i ) ( 6 4 i ) = 1 \det(A) = (2-3i)(2+i)-(5+i)(1-i) = (7-4i)-(6-4i) = 1 .

Therefore, we can obtain the inverse matrix of A A :

A 1 = [ 2 + i 5 i 1 + i 2 3 i ] A^{-1} = \begin{bmatrix} 2+i & -5-i \\ -1+i & 2-3i \end{bmatrix} .

Hence, A 1 A [ z w ] = [ z w ] = A 1 [ 19 4 i 9 i ] A^{-1}\cdot A \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} z \\ w \end{bmatrix} = A^{-1}\begin{bmatrix} 19-4i \\ 9-i \end{bmatrix} .

[ z w ] = [ 2 + i 5 i 1 + i 2 3 i ] [ 19 4 i 9 i ] = [ ( 2 + i ) ( 19 4 i ) + ( 5 i ) ( 9 i ) ( 1 + i ) ( 19 4 i ) + ( 2 3 i ) ( 9 i ) ] = [ ( 42 + 11 i ) + ( 46 4 i ) ( 15 + 23 i ) + ( 15 29 i ) ] = [ 4 + 7 i 6 i ] \begin{bmatrix} z \\ w \end{bmatrix} = \begin{bmatrix} 2+i & -5-i \\ -1+i & 2-3i \end{bmatrix} \begin{bmatrix} 19-4i \\ 9-i \end{bmatrix} = \begin{bmatrix} (2+i)(19-4i)+(-5-i)(9-i) \\ (-1+i)(19-4i)+(2-3i)(9-i) \end{bmatrix} = \begin{bmatrix} (42+11i)+(-46-4i) \\ (-15+23i)+(15-29i) \end{bmatrix} = \begin{bmatrix} -4+7i \\ -6i \end{bmatrix}

Thus, z + w = 4 + 7 i 6 i = 4 + i z+w = -4+7i -6i = -4+i .

Then, z + w 2 = 4 2 + 1 2 = 17 |z+w|^2 = 4^2 + 1^2 = \boxed{17} .

Why in the world did I use Row Echelon? (No one cares, but don't be me)

Akshay Krishna - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...