Let and be the complex numbers satisfying the equations above.
Compute .
Note : , and is the absolute value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Relevant wiki: Solving Linear Systems Using Matrices
We can rewrite the system of equations as the product of matrices as shown below:
[ 2 − 3 i 1 − i 5 + i 2 + i ] [ z w ] = [ 1 9 − 4 i 9 − i ]
Let A = [ 2 − 3 i 1 − i 5 + i 2 + i ] . Then det ( A ) = ( 2 − 3 i ) ( 2 + i ) − ( 5 + i ) ( 1 − i ) = ( 7 − 4 i ) − ( 6 − 4 i ) = 1 .
Therefore, we can obtain the inverse matrix of A :
A − 1 = [ 2 + i − 1 + i − 5 − i 2 − 3 i ] .
Hence, A − 1 ⋅ A [ z w ] = [ z w ] = A − 1 [ 1 9 − 4 i 9 − i ] .
[ z w ] = [ 2 + i − 1 + i − 5 − i 2 − 3 i ] [ 1 9 − 4 i 9 − i ] = [ ( 2 + i ) ( 1 9 − 4 i ) + ( − 5 − i ) ( 9 − i ) ( − 1 + i ) ( 1 9 − 4 i ) + ( 2 − 3 i ) ( 9 − i ) ] = [ ( 4 2 + 1 1 i ) + ( − 4 6 − 4 i ) ( − 1 5 + 2 3 i ) + ( 1 5 − 2 9 i ) ] = [ − 4 + 7 i − 6 i ]
Thus, z + w = − 4 + 7 i − 6 i = − 4 + i .
Then, ∣ z + w ∣ 2 = 4 2 + 1 2 = 1 7 .