∫ 0 2 π i tan η d η = e β + e γ α π
Find the value of α + β + γ + π − 3 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Similar solution with @N. Aadhaar Murty's
I = ∫ 0 2 π i tan x d x = ∫ 0 2 π sin i x cos − i x d x = 2 1 B ( 2 1 + i , 2 1 − i ) = 2 Γ ( 1 ) Γ ( 2 1 + i ) Γ ( 2 1 − i ) = 2 ( 0 ! ) sin ( 2 1 + i π ) π = e 2 1 + i π − e − 2 1 + i π π i = e 2 π ( cos 2 π + i sin 2 π ) − e − 2 π ( cos 2 π − i sin 2 π ) π i = e 2 π + e − 2 π π Beta function B ( m , n ) = 2 ∫ 0 2 π sin 2 m − 1 x cos 2 n − 1 x d x B ( m , n ) = Γ ( m + n ) Γ ( m ) Γ ( n ) , where Γ ( ⋅ ) is gamma function. Euler’s reflection: Γ ( z ) Γ ( 1 − z ) = sin ( π z ) π Γ ( n ) = ( n − 1 ) ! Euler’s formula: e θ i = cos θ + i sin θ
Therefore α + β + γ + π − 3 = π − 2 ≈ 1 . 1 4 .
References:
Problem Loading...
Note Loading...
Set Loading...
First, let's derive an expression for the n t h root. We have -
∫ 0 2 π n tan η d η = ∫ 0 2 π sin 2 ( 2 n 1 + 2 1 ) − 1 η ⋅ cos 2 ( 2 1 − 2 n 1 ) − 1 η d η = 2 1 B ( 2 n 1 + 2 1 , 2 1 − 2 n 1 ) = 2 Γ ( 2 n 1 + 2 1 ) Γ ( 2 1 − 2 n 1 ) = 2 π csc ( 2 n π + 2 π ) = 2 π sec ( 2 n π )
by Euler's reflection formula.
In our case, n = − i . Therefore,
∫ 0 2 π i tan η d η = 2 cos ( 2 i π ) π = 2 cosh ( 2 π ) π = e 2 π + e 2 − π π
∴ α + β + γ + π − 3 = π − 2
NOTE - To extend this to any complex number, cos ( a + b i ) can be evaluated as follows
We know from Euler's Formula that -
cos x = 2 e i x + e − i x ∴ cos ( a + b i ) = 2 e a i − b + e − a i + b
as sin x is an odd function.
Separating real and imaginary parts by gives us -
cos ( a + b i ) = 2 ( e − b + e b ) cos a + 2 i ( e − b − e b ) sin a