Up to the challenge?

Calculus Level 3

0 π 2 d η tan η i = α π e β + e γ \int_{0}^{\frac {\pi}{2}} \frac {d\eta}{\sqrt [i] {\tan \eta}} = \frac {\alpha \pi}{e^{\beta} + e^{\gamma}}

Find the value of α + β + γ + π 3 \alpha + \beta + \gamma + \pi - 3 .


The answer is 1.14159265359.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

N. Aadhaar Murty
Oct 9, 2020

First, let's derive an expression for the n t h n^{th} root. We have -

0 π 2 tan η n d η = 0 π 2 sin 2 ( 1 2 n + 1 2 ) 1 η cos 2 ( 1 2 1 2 n ) 1 η d η = 1 2 B ( 1 2 n + 1 2 , 1 2 1 2 n ) = Γ ( 1 2 n + 1 2 ) Γ ( 1 2 1 2 n ) 2 = π 2 csc ( π 2 n + π 2 ) = π 2 sec ( π 2 n ) \int_{0}^{\frac {\pi}{2}} \sqrt [n] {\tan \eta} d\eta = \int_{0}^{\frac {\pi}{2}} \sin^{2(\frac {1}{2n} + \frac {1}{2}) - 1} \eta \cdot \cos^{2(\frac {1}{2} -\frac {1}{2n}) -1} \eta d\eta = \frac {1}{2}\Beta\left(\frac {1}{2n} + \frac {1}{2}, \frac {1}{2} - \frac {1}{2n}\right) = \frac {\Gamma(\frac {1}{2n} + \frac {1}{2}) \Gamma(\frac {1}{2} -\frac {1}{2n})}{2} = \frac {\pi}{2} \csc \left(\frac {\pi}{2n} + \frac {\pi}{2}\right) = \frac {\pi}{2} \sec \left(\frac {\pi}{2n}\right)

by Euler's reflection formula.

In our case, n = i . n = -i. Therefore,

0 π 2 d η tan η i = π 2 cos ( i π 2 ) = π 2 cosh ( π 2 ) = π e π 2 + e π 2 \int_{0}^{\frac {\pi}{2}} \frac {d\eta}{\sqrt[i] {\tan \eta}} =\frac {\pi}{2\cos (\frac {i\pi}{2})} = \frac {\pi}{2\cosh\left(\frac {\pi}{2}\right)} = \frac {\pi}{e^{\frac {\pi}{2}} + e^{\frac {-\pi}{2}}}

α + β + γ + π 3 = π 2 \color{#0C6AC7} {\boxed {\Large{\therefore \alpha + \beta + \gamma + \pi - 3 = \pi -2}}}

NOTE - To extend this to any complex number, cos ( a + b i ) \cos(a + bi) can be evaluated as follows

We know from Euler's Formula that -

cos x = e i x + e i x 2 cos ( a + b i ) = e a i b + e a i + b 2 \cos x = \frac {e^{ix} +e^{-ix} } {2} \therefore \cos (a + bi) = \frac {e^{ai - b} + e^{-ai +b}}{2}

as sin x \sin x is an odd function.

Separating real and imaginary parts by gives us -

cos ( a + b i ) = ( e b + e b ) cos a 2 + i ( e b e b ) sin a 2 \cos (a + bi) = \frac {(e^{-b} + e^{b}) \cos a }{2} + \frac {i(e^{-b} - e^{b})\sin a}{2}

Similar solution with @N. Aadhaar Murty's

I = 0 π 2 d x tan x i = 0 π 2 sin i x cos i x d x Beta function B ( m , n ) = 2 0 π 2 sin 2 m 1 x cos 2 n 1 x d x = 1 2 B ( 1 + i 2 , 1 i 2 ) B ( m , n ) = Γ ( m ) Γ ( n ) Γ ( m + n ) , where Γ ( ) is gamma function. = Γ ( 1 + i 2 ) Γ ( 1 i 2 ) 2 Γ ( 1 ) Euler’s reflection: Γ ( z ) Γ ( 1 z ) = π sin ( π z ) = π 2 ( 0 ! ) sin ( 1 + i 2 π ) Γ ( n ) = ( n 1 ) ! = π i e 1 + i 2 π e 1 + i 2 π Euler’s formula: e θ i = cos θ + i sin θ = π i e π 2 ( cos π 2 + i sin π 2 ) e π 2 ( cos π 2 i sin π 2 ) = π e π 2 + e π 2 \begin{aligned} I & = \int_0^\frac \pi 2 \frac {dx}{\sqrt[i]{\tan x}} \\ & = \int_0^\frac \pi 2 \sin^i x \cos^{-i} x \ dx & \small \blue{\text{Beta function } B(m,n) = 2\int_0^\frac \pi 2 \sin^{2m-1} x \cos^{2n-1} x\ dx} \\ & = \frac 12 B \left(\frac {1+i}2, \frac {1-i}2 \right) & \small \blue{B(m,n) = \frac {\Gamma(m)\Gamma(n)}{\Gamma(m+n)}\text{, where }\Gamma(\cdot) \text{ is gamma function.}} \\ & = \frac {\blue{\Gamma \left(\frac {1+i}2\right) \Gamma \left(\frac {1-i}2\right)}}{2\red{\Gamma (1)}} & \small \blue{\text{Euler's reflection: } \Gamma(z) \Gamma(1-z) = \frac \pi{\sin (\pi z)}} \\ & = \frac \blue \pi{2\red{(0!)}\blue{\sin \left(\frac {1+i}2\pi\right)}} & \small \red{\Gamma(n) = (n-1)!} \\ & = \frac {\pi i}{e^{\frac {1+i}2\pi}-e^{-\frac {1+i}2\pi}} & \small \blue{\text{Euler's formula: }e^{\theta i}=\cos \theta + i \sin \theta} \\ & = \frac {\pi i}{e^\frac \pi 2 (\cos \frac \pi 2 + i \sin \frac \pi 2) - e^{-\frac \pi 2}(\cos \frac \pi 2 - i\sin \frac \pi 2)} \\ & = \frac \pi{e^\frac \pi 2 + e^{-\frac \pi 2}} \end{aligned}

Therefore α + β + γ + π 3 = π 2 1.14 \alpha+\beta+\gamma+\pi - 3 = \pi - 2 \approx \boxed{1.14} .


References:

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...