Complex Exponents

Algebra Level 5

( ( x ) 2 x ) 3 x x i 2 = ( ( ( x ) 2 x ) 3 x ) 4 x 1 5 x \huge \sqrt[{x^i}^2]{{\left({\left(x\right)}^{2x}\right)}^{3x}} = \sqrt[\frac{1}{5x}]{{\left({\left({\left(x\right)}^{2x}\right)}^{3x}\right)}^{4x}}

Find the real value of x x (upto 2 decimal places) satisfying the real equation above.

Note :- Here x { 1 , 0 , 1 } x \neq \{-1 , 0 , 1\} . Here i i denotes 1 \sqrt{-1} .


This is one part of the set Fun with exponents


The answer is 0.05.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ashish Menon
May 6, 2016

( ( x ) 2 x ) 3 x x i 2 = ( ( ( x ) 2 x ) 3 x ) 4 x 1 5 x ( x ) 6 x 2 x 1 = ( ( ( ( x ) 2 x ) 3 x ) 4 x ) 5 x x 6 x 3 = x 120 x 4 Equating the powers : 6 x 3 = 120 x 4 x = 6 120 = 0.05 \begin{aligned} \huge \sqrt[{x^i}^2]{{\left({\left(x\right)}^{2x}\right)}^{3x}} & = \huge \sqrt[\frac{1}{5x}]{{\left({\left({\left(x\right)}^{2x}\right)}^{3x}\right)}^{4x}}\\ \\ \huge \sqrt[x^{-1}]{{\left(x\right)}^{6x^2}} & = \huge {\left ({\left({\left({\left(x\right)}^{2x}\right)}^{3x}\right)}^{4x}\right)}^{5x}\\ \\ \LARGE x^{6x^3} & = \LARGE x^{120x^4}\\ \\ \text{Equating the powers}:-\\ \Large 6x^3 & = \Large 120x^4\\ \\ \Large x & = \dfrac{6}{120}\\ & = \boxed{0.05} \end{aligned}

( ( x ) 2 x ) 3 x x i 2 = ( ( ( x ) 2 x ) 3 x ) 4 x 1 5 x \Rightarrow \sqrt[x^{\color{#D61F06}{i^2}}]{{\left({\left(x\right)}^{2x}\right)}^{3x}} = \sqrt[\frac{1}{5x}]{{\left({\left({\left(x\right)}^{2x}\right)}^{3x}\right)}^{4x}}

x 6 x 2 x 1 = x 24 x 3 × 5 x x^{\frac{6x^2}{x^{\color{#D61F06}{-1}}}}=x^{24x^3×5x}

6 x 3 = 24 x 3 × 5 x 6x^3=24x^3×5x

x = 1 20 = 0.05 x=\dfrac{1}{20}=\boxed{0.05}

Yes, it is the exact same method as mine XD

Ashish Menon - 5 years, 1 month ago

I don't understand why is this level 4 algebra, suppose to be level 3

Jason Chrysoprase - 5 years, 1 month ago
Sabhrant Sachan
May 6, 2016

Your Questions on Exponents are of the Highest Quality currently in Brilliant \text {Your Questions on Exponents are of the Highest Quality currently in Brilliant }

Jeez thanks! :)

Ashish Menon - 5 years, 1 month ago

Log in to reply

I told you :P

Abhiram Rao - 5 years, 1 month ago

Log in to reply

Thanks brother :)

Ashish Menon - 5 years, 1 month ago

i 2 = 1 , b a = b a 1 , a n d ( X m ) n = X m × n . Since the base on both sides is same we we equate the powers as follows:- ( 1 X 1 ) ( 3 X ) ( 2 X ) = ( 1 ( 5 X ) 1 ) ( 4 X ) ( 3 X ) ( 2 X ) ( X ) = ( 5 X ) ( 4 X ) , X = 1 20 = 0.05. \ \ \ \large i^2= - 1,\ \ \ \sqrt[a]b=b^{a^{ -1 }},\ \ \ and\ \ (X^m)^n=X^{m \times n}.\ \ \\ \text{Since the base on both sides is same we we equate the powers as follows:-}\\ (\dfrac 1 {X^{ - 1}})(3X)(2X)\ =\ (\dfrac 1 {(5X)^{ - 1}})(4X)(3X)(2X)\\ \implies\ (X)=(5X)(4X),\ \ \ \implies X=\frac 1 {20}=0.05.

Correct! One suggestion:- The solution might look more stylish if you replace X X with x x ;)

Ashish Menon - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...