Complex Fractional Equation

Algebra Level 5

Given that there is only one triplet ( x , y , z ) , (x,y,z), where x , y x,y and z z are real numbers greater than 3 , 3, which satisfies the equation

( x + 2 ) 2 y + z 2 + ( y + 4 ) 2 z + x 4 + ( z + 6 ) 2 x + y 6 = 36 , \frac{(x+2)^2}{y+z-2}+\frac{(y+4)^2}{z+x-4}+\frac{(z+6)^2}{x+y-6}=36,

find the value of x . x.


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Set a = y + z 2 , b = z + x 4 a=y+z-2, b=z+x-4 and c = x + y 6 c=x+y-6 . Then we have that a , b , c > 0 a,b,c>0 since x , y , z > 3 x,y,z>3 and that x + 2 = b + c a + 12 2 , y + 4 = c + a b + 12 2 x+2 = \frac{b+c-a+12}{2}, y+4=\frac{c+a-b+12}{2} and z + 6 = a + b c + 12 2 z+6=\frac{a+b-c+12}{2} . Thus, rewriting the given equation and using Cauchy-Schwarz Inequality we get 36 = ( b + c a + 12 ) 2 4 a + ( c + a b + 12 ) 2 4 b + ( a + b c + 12 ) 2 4 c ( a + b + c + 36 ) 2 4 ( a + b + c ) , \begin{aligned} 36&=\dfrac{(b+c-a+12)^2}{4a}+\dfrac{(c+a-b+12)^2}{4b}+\dfrac{(a+b-c+12)^2}{4c}\\ &\geq \dfrac{(a+b+c+36)^2}{4(a+b+c)}, \end{aligned} which follows that ( a + b + c + 36 ) 2 144 ( a + b + c ) ( a + b + c 36 ) 2 0. (a+b+c+36)^2\leq 144(a+b+c)\iff (a+b+c-36)^2 \leq 0. Since ( a + b + c 36 ) 2 0 (a+b+c-36)^2 \geq 0 , we must have ( a + b + c 36 ) 2 = 0 (a+b+c-36)^2 = 0 , so that a + b + c = 36 a+b+c=36 . Furthermore, equality holds when b + c a + 12 4 a = c + a b + 12 4 b = a + b c + 12 4 c , \dfrac{b+c-a+12}{4a}=\dfrac{c+a-b+12}{4b}=\dfrac{a+b-c+12}{4c}, which simplifies to a = b = c a=b=c . Thus, we have a = b = c = 12 a=b=c=12 , so y + z = 14 , z + x = 16 y+z=14, z+x=16 and x + y = 18 x+y=18 . Hence, we get x = 16 + 18 14 2 = 10 x=\frac{16+18-14}{2}=\boxed{10} .

It is given that there is only one triplet ( x , y , z ) (x,y,z) that satisfies the equation. Looking at the equation and to simply it, we assume that y = x 2 y=x-2 and z = x 4 z=x-4 , then:

( x + 2 ) 2 y + z 2 + ( y + 4 ) 2 z + x 4 + ( z + 6 ) 2 x + y 6 = 36 \quad \dfrac {(x+2)^2}{y+z-2} + \dfrac {(y+4)^2}{z+x-4} + \dfrac {(z+6)^2}{x+y-6} = 36

( x + 2 ) 2 x 2 + x 4 2 + ( x 2 + 4 ) 2 x 4 + x 4 + ( x 4 + 6 ) 2 x + x 2 6 = 36 \quad \Rightarrow \dfrac {(x+2)^2}{x-2+x-4-2} + \dfrac {(x-2+4)^2}{x-4+x-4} + \dfrac {(x-4+6)^2}{x+x-2-6} = 36

( x + 2 ) 2 2 x 8 + ( x + 2 ) 2 2 x 8 + ( x + 2 ) 2 2 x 8 = 36 \quad \Rightarrow \dfrac {(x+2)^2}{2x-8} + \dfrac {(x+2)^2}{2x-8} + \dfrac {(x+2)^2}{2x-8} = 36

( x + 2 ) 2 2 x 8 = 12 x 2 + 4 x + 4 = 24 x 96 \quad \Rightarrow \dfrac {(x+2)^2}{2x-8} = 12 \quad \Rightarrow x^2+4x+4 = 24x-96

x 2 20 x + 100 = 0 ( x 10 ) 2 = 0 x = 10 \quad \Rightarrow x^2-20x+100 = 0 \quad \Rightarrow (x-10)^2 = 0 \quad \Rightarrow x = \boxed{10}

Incredible Mind
Jan 3, 2015

i did something which i am myself not able to understand but i got answer as 10 alright.........i sub x+2=u,y+4=v,z+6=w ...............and then i used symmetry with titu's lemma and got x=10 . cheers

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...