Complex Geometry

Algebra Level 4

If a z ˉ + a ˉ z + 1 = 0 a\bar{z}+\bar{a}z+1=0 and b z ˉ + b ˉ z 1 = 0 b\bar{z}+\bar{b}z-1=0 are two mutually perpendicular lines where a a and b b are two non-zero fixed complex numbers, z z is a variable complex number then which of these holds ?

a b ˉ a ˉ b = 0 a\bar{b}-\bar{a}b=0 a b + a ˉ b ˉ = 0 ab+\bar{a}\bar{b}=0 a b ˉ + a ˉ b = 0 a\bar{b}+\bar{a}b=0 a b a ˉ b ˉ = 0 ab-\bar{a}\bar{b}=0

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

There exists two reals p , q p,q such that the equation of a straight line can be written as :

2 p x + 2 q y + b = 0 2px+2qy+b=0 & Let z = x + i y z=x+iy .

p ( z + z ) i q ( z z ) + b = 0 p(z+\overline{z}) - iq(z-\overline{z}) + b =0

z ( p i q ) + z ( p + i q ) + b = 0 \implies z(p-iq) + \overline{z}(p+iq) + b=0

This can be written as : a z + a z + b = 0 \overline{a}z+a\overline{z}+b=0 where a = p + i q 0 a=p+iq\ne0

Slope of the line = 2 p 2 q = 2 p 2 q = p q = R e ( a ) I m ( a ) -\frac{2p}{2q}=-\frac{\cancel{2}p}{\cancel{2}q} = -\frac{p}{q}=-\frac{Re(a)}{Im(a)}

We are given : { a z + a z + 1 = 0 (1) b z + b z 1 = 0 (2) \begin{cases} a\overline{z}+\overline{a}z+1=0 \to \text{(1)} \\ b\overline{z}+\overline{b}z-1=0 \to \text{(2)} \end{cases}

Slope of (1) = R e ( a ) I m ( a ) = i a + a a a = m 1 -\frac{Re(a)}{Im(a)}=-i\frac{a+\overline{a}}{a-\overline{a}}=m_1

Slope of (2) = R e ( b ) I m ( b ) = i b + b b b = m 2 -\frac{Re(b)}{Im(b)}=-i\frac{b+\overline{b}}{b-\overline{b}}=m_2

We know since they are perpendicular , m 1 m 2 = 1 m_1m_2=-1

m 1 m 2 = 1 i 2 ( a + a ) ( b + b ) ( a a ) ( b b ) = 1 m_1m_2=-1\implies \cancel{i^2}\frac{(a+\overline{a})(b+\overline{b})}{(a-\overline{a})(b-\overline{b})}=\cancel{-1}

a b + a b + a b + a b = a b + a b a b a b \implies \cancel{ab}+\cancel{\overline{ab}} + a\overline{b}+\overline{a}b = \cancel{ab}+\cancel{\overline{ab}} - a\overline{b}-\overline{a}b

a b + a b = 0 \implies \boxed{a\overline{b}+\overline{a}b=0}

Good onr ....man ....

Sayandeep Ghosh - 5 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...