Complex Imaginations

Algebra Level 3

If the biquadratic x 4 + a x 3 + b x 2 + c x + d = 0 x^4+ax^3+bx^2+cx+d=0 has four complex roots, two with the sum 3 + 4 i 3+4i , and the other two with the product of 13 + i 13+i , find the value of b b .

Note :

  • a , b , c , d a,b,c,d are all real coefficients.
  • i = 1 i=\sqrt {-1}


The answer is 51.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

David Vreken
Dec 19, 2018

Let the two roots that add up to 3 + 4 i 3 + 4i be z 1 = p + q i z_1 = p + qi and z 3 = r + s i z_3 = r + si . Then p + r = 3 p + r = 3 and q + s = 4 q + s = 4 .

By the complex conjugate root theorem , the other two roots must be z 2 = p q i z_2 = p - qi and z 4 = r s i z_4 = r - si . These have a product of ( p q i ) ( r s i ) = 13 + i (p - qi)(r - si) = 13 + i , so p r q s = 13 pr - qs = 13 .

The coefficient of the x 2 x^2 term for roots z 1 z_1 , z 2 z_2 , z 3 z_3 , and z 4 z_4 is b = b =

= z 1 z 2 + z 1 z 3 + z 1 z 4 + z 2 z 3 + z 2 z 4 + z 3 z 4 = z_1z_2 + z_1z_3 + z_1z_4 + z_2z_3 + z_2z_4 + z_3z_4

= ( p + q i ) ( p q i ) + ( p + q i ) ( r + s i ) + ( p + q i ) ( r s i ) + ( p q i ) ( r + s i ) + ( p q i ) ( r s i ) + ( r + s i ) ( r s i ) = (p + qi)(p - qi) + (p + qi)(r + si) + (p + qi)(r - si) + (p - qi)(r + si) + (p - qi)(r - si) + (r + si)(r - si)

= ( p 2 + q 2 ) + ( p + q i ) ( 2 r ) + ( p q i ) ( 2 r ) + ( r 2 + s 2 ) = (p^2 + q^2) + (p + qi)(2r) + (p - qi)(2r) + (r^2 + s^2)

= p 2 + q 2 + 4 p r + r 2 + s 2 = p^2 + q^2 + 4pr + r^2 + s^2

= 2 p r 2 q s + p 2 + 2 p r + r 2 + q 2 + 2 q s + s 2 = 2pr - 2qs + p^2 + 2pr + r^2 + q^2 + 2qs + s^2

= 2 ( p r q s ) + ( p + r ) 2 + ( q + s ) 2 = 2(pr - qs) + (p + r)^2 + (q + s)^2

In this case, p r q s = 13 pr - qs = 13 , p + r = 3 p + r = 3 , and q + s = 4 q + s = 4 , so b = 2 ( 13 ) + 3 2 + 4 2 = 51 b = 2(13) + 3^2 + 4^2 = \boxed{51} .

X X
Dec 22, 2018

Let the 4 roots be z 1 , z 2 , z 1 , z 2 z_1,z_2,\overline{z_1},\overline{z_2}

And let z 1 + z 2 = 3 + 4 i , z 1 z 2 = 13 + i z_1+z_2=3+4i,\overline{z_1}\overline{z_2}=13+i

So, z 1 + z 2 = 3 4 i , z 1 z 2 = 13 i \overline{z_1}+\overline{z_2}=3-4i,z_1z_2=13-i

b = z 1 z 2 + z 1 z 2 + ( z 1 + z 2 ) ( z 1 + z 2 ) b=z_1z_2+\overline{z_1}\overline{z_2}+(z_1+z_2)(\overline{z_1}+\overline{z_2})

= ( 13 i ) + ( 13 + i ) + ( 3 + 4 i ) ( 3 4 i ) = 51 =(13-i)+(13+i)+(3+4i)(3-4i)=51


Note: z \overline{z} is the complex conjugate of z z

Chew-Seong Cheong
Dec 23, 2018

Let the four complex roots be α \alpha , β \beta , γ \gamma , and δ \delta . Let α + β = 3 + 4 i \alpha + \beta = 3+4i and γ δ = 13 + i \gamma \delta = 13+i . By Vieta's formula , we have α + β + γ + δ = a \alpha + \beta + \gamma + \delta = -a . Since a a is real, this means that γ + δ = 3 4 i \gamma + \delta = 3-4i , the conjugate of α + β = 3 + 4 i \alpha + \beta = 3+4i . Similarly, α β γ δ = d \alpha \beta \gamma \delta = d , as d d is real, α β = γ δ = 13 i \alpha \beta = \overline {\gamma \delta} = 13-i . Now we have:

b = α β + α γ + α δ + β γ + β δ + γ δ = 13 i + ( α + β ) ( γ + δ ) + 13 + i = 26 + ( 3 + 4 i ) ( 3 4 i ) = 26 + 9 + 16 = 51 \begin{aligned} b & = \alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta \\ & = 13 -i + (\alpha + \beta) (\gamma + \delta) + 13 +i \\ & = 26 + (3+4i)(3-4i) \\ & = 26 + 9 + 16 \\ & = \boxed{51} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...