Complex in Binomial

Probability Level pending

r = 0 n ( n r ) ( 1 ) r [ i r + i 2 r + i 3 r + i 4 r ] \sum _{ r=0 }^{ n }{ \left( \begin{matrix} n \\ r \end{matrix} \right) { \left( -1 \right) }^{ r }\left[ { i }^{ r }+{ i }^{ 2r }+{ i }^{ 3r }+{ i }^{ 4r } \right] }

If the sum above can be expressed as A B n + C ( n E + D ) cos ( n π F ) { A }^{ Bn }+{ C }^{ \left( \frac { n }{ E } +{D} \right) }\cos { \left( \frac { n\pi }{ F } \right) } then value of (A+B+C+D+E+F) is: Where A, C, E are prime Numbers


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

r = 0 n ( 1 ) r ( n r ) [ i r + i 2 r + i 3 r + i 4 r ] \sum _{ r=0 }^{ n }{ { \left( -1 \right) }^{ r }\left( \begin{matrix} n \\ r \end{matrix} \right) \left[ { i }^{ r }+{ i }^{ 2r }+{ i }^{ 3r }+{ i }^{ 4r } \right] } can be written as

r = 0 n ( 1 ) r ( n r ) [ i r + ( 1 ) r + ( i ) r + 1 ] \sum _{ r=0 }^{ n }{ { \left( -1 \right) }^{ r }\left( \begin{matrix} n \\ r \end{matrix} \right) \left[ { i }^{ r }+{ \left( -1 \right) }^{ r }+{ \left( -i \right) }^{ r }+1 \right] }

On more simplification we get

r n [ ( n r ) ( i ) r + ( n r ) + ( n r ) i r + ( n r ) ( 1 ) r ] \sum _{ r }^{ n }{ \left[ \left( \begin{matrix} n \\ r \end{matrix} \right) { \left( -i \right) }^{ r }+\left( \begin{matrix} n \\ r \end{matrix} \right) +\left( \begin{matrix} n \\ r \end{matrix} \right) { i }^{ r }+\left( \begin{matrix} n \\ r \end{matrix} \right) { \left( -1 \right) }^{ r } \right] }

thus the above can be represented as : ( 1 i ) n + ( 1 + 1 ) n + ( 1 + i ) n + ( 1 1 ) n { \left( 1-i \right) }^{ n }+{ \left( 1+1 \right) }^{ n }+{ \left( 1+i \right) }^{ n }+{ \left( 1-1 \right) }^{ n } . which can be written in a more simplified way by using euler's formula i.e.

( 2 ) n ( cos π 4 + i sin π 4 ) n + ( 2 ) n ( cos π 4 i sin π 4 ) n + 2 n { \left( \sqrt { 2 } \right) }^{ n }{ \left( \cos { \frac { \pi }{ 4 } } +i\sin { \frac { \pi }{ 4 } } \right) }^{ n }+{ \left( \sqrt { 2 } \right) }^{ n }{ \left( \cos { \frac { \pi }{ 4 } } -i\sin { \frac { \pi }{ 4 } } \right) }^{ n }+{ 2 }^{ n }

On further simplification we get

2 n + 2 ( n / 2 + 1 ) n ( cos n π 4 ) { 2 }^{ n }+{ 2 }^{ \left( n/2+1 \right) n }\left( \cos { \frac { n\pi }{ 4 } } \right)

therefore by comparing we get

A=2, B=1, C=2, D=1, E=2, F=4 thus A+B+C+D+E+F = 12

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...