Given that function F ( x ) = i 2 i + 3 ln ( i x 2 + 2 x + i 3 i 3 x 2 + 2 x + i ) for x ∈ ( 0 , 1 ) and F ( 3 1 ) = e α π β π , find α + β .
Notation: i = − 1 denotes the imaginary unit .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution Sir!!!
Log in to reply
Sir we can also calculate it by first simplifying the function
Let us first simplify the the given function i.e.
Let G(x) = l n ( i x 2 + 2 x + i 3 i 3 x 2 + 2 x + i ) = l n ( 2 x − i ( 1 − x 2 ) 2 x + i ( 1 − x 2 ) ) (by taking i as common)
Thus the above expression can be defined as the complex number (z) with real part 2x and imaginary part ( 1 − x 2 )
therefore let us assume that magnitude of (z) is r and principal argument θ , therefore above expression can be written as
l n ( r ( cos θ − i sin θ ) r ( cos θ + i sin θ ) )
thus changing into euler form we get
l n ( e − i θ e i θ ) = l n ( e 2 i θ ) = 2 i θ and on more simplification
we get θ = tan − 1 ( 2 x 1 − x 2 ) = cot − 1 ( 1 − x 2 2 x ) = 2 π − tan − 1 ( 1 − x 2 2 x ) = 2 π − 2 tan − 1 x since x ϵ ( 0 , 1 )
therefore G(x) = 2 i θ = i ( π − 4 tan − 1 x )
Let H(x) = i 2 i + 3
therefore on simplification we get
i 2 i + 3 = ( − i ) i 2 i = ( − i ) ( e i π / 2 ) 2 i = ( − i ) ( e − π )
Combining H(x) & G(x) we get
F(x) = ( e − π ) ( π − 4 tan − 1 x )
therefore now required question can be solved
Solution inspired by @Ayush Mishra
F ( x ) = i 2 i + 3 ln ( i x 2 + 2 x + i 3 i 3 x 2 + 2 x + i ) = i 2 i ( − i ) ln ( i x 2 + 2 x − i − i x 2 + 2 x + i ) = e i 2 π × 2 i ( − i ) ln ( 2 x − i ( 1 − x 2 ) 2 x + i ( 1 − x 2 ) ) = − i e − π ln ( 1 + x 2 2 x − i 1 + x 2 1 − x 2 1 + x 2 2 x + i 1 + x 2 1 − x 2 ) = − i e − π ln ( sin θ − i cos θ sin θ + i cos θ ) = − i e − π ln ( cos ( 2 π − θ ) + i sin ( 2 π − θ ) cos ( 2 π − θ ) + i sin ( 2 π − θ ) ) = − i e − π ln ( e − i ( 2 π − θ ) e i ( 2 π − θ ) ) = − i e − π ln ( e 2 i ( 2 π − θ ) ) = − i e − π ( 2 i ) ( 2 π − θ ) = e π π − 2 ⋅ 2 tan − 1 x Note that i 3 = ( i 2 ) i = − i By Euler’s formula e i θ = cos θ + i sin θ By half-angle tangent substitution where x = tan 2 θ By Euler’s formula e i ϕ = cos ϕ + i sin ϕ Since x = tan 2 θ ⟹ θ = 2 tan − 1 x
⟹ F ( 3 1 ) = e π π − 4 tan − 1 ( 3 1 ) = e π π − 4 ⋅ 6 π = 3 e π π . Therefore, α + β = 1 + 3 = 4 .
Previous solution
F ( x ) F ( 3 1 ) = i 2 i + 3 ln ( i x 2 + 2 x + i 3 i 3 x 2 + 2 x + i ) = i 2 i ( − i ) ln ( i x 2 + 2 x − i − i x 2 + 2 x + i ) = e i 2 π × 2 i ( − i ) ln ( i 3 1 + 3 2 − i − i 3 1 + 3 2 + i ) = e − π ( − i ) ln ( 3 2 − i 3 2 3 2 + i 3 2 ) = − i e − π ln ⎝ ⎛ 3 4 ( 2 3 − i 2 1 ) 3 4 ( 2 3 + i 2 1 ) ⎠ ⎞ = − i e − π ln ( e − 6 π i e 6 π i ) = − i e − π ln ( e 3 π i ) = − i e − π × 3 π i = 3 e π π Note that i 3 = ( i 2 ) i = − i By Euler’s formula e i θ = cos θ + i sin θ By Euler’s formula again
Therefore, α + β = 1 + 3 = 4 .
Sir I had also written the solution, is it correct
Log in to reply
Sorry, your solution is difficult to check.
Problem Loading...
Note Loading...
Set Loading...
Note: For this problem to have a unique solution, we need to assume the principal root of negative 1 ( e i π / 2 )
Evaluate the argument of the logarithm:
2 1 / 3 − ( 2 / 3 ) i 2 1 / 3 + ( 2 / 3 ) i × 1 = 2 1 / 3 − ( 2 / 3 ) i 2 1 / 3 + ( 2 / 3 ) i × 2 1 / 3 + ( 2 / 3 ) i 2 1 / 3 + ( 2 / 3 ) i = 2 1 + 3 i = e i π / 3
The function therefore simplifies to:
F = i 2 i + 3 3 π i = 3 π i 2 i + 4 = 3 π e ( i π / 2 ) ( 2 i + 4 ) = 3 π e − π e i 2 π = 3 e π π