Complex integral?

Calculus Level 3

Find the value of 0 π sin ( x ) e 2 i x d x \displaystyle \int_{0}^{\pi}{\sin(x)e^{-2ix}dx} .

Notation: i = 1 i=\sqrt{-1} denotes the imaginary unit .

1 3 -\frac{1}{3} 2 3 -\frac{2}{3} π 2 6 -\frac{\pi ^2}{6} π 4 -\frac{\pi}{4} ln π \ln \pi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Relevant wiki: Euler's Formula

I = 0 π e 2 i x sin x d x By Euler’s formula: = 0 π e 2 i x ( e i x e i x 2 i ) d x e i θ = cos θ + i sin θ = 1 2 i 0 π ( e i x e 3 i x ) d x = 1 2 i [ e 3 i x 3 i e i x i ] 0 π By Euler’s formula = 1 2 i [ 2 3 i 2 i ] = 2 3 \begin{aligned} I & = \int_0^\pi e^{-2ix} {\color{#3D99F6}\sin x} \ dx & \small \color{#3D99F6} \text{By Euler's formula:} \\ & = \int_0^\pi e^{-2ix} {\color{#3D99F6}\left(\frac {e^{ix}-e^{-ix}}{2i}\right)} \ dx & \small \color{#3D99F6} e^{i\theta} = \cos \theta + i\sin \theta \\ & = \frac 1{2i} \int_0^\pi \left(e^{-ix}-e^{-3ix}\right) dx \\ & = \frac 1{2i} \left[\frac {\color{#3D99F6}e^{-3ix}}{3i}-\frac {\color{#3D99F6}e^{-ix}}i \right]_0^\pi & \small \color{#3D99F6} \text{By Euler's formula} \\ & = \frac 1{2i} \left[\frac {\color{#3D99F6}-2}{3i}-\frac {\color{#3D99F6}-2}i \right] \\ & = \boxed{-\dfrac 23} \end{aligned}

Using Euler's formula e i x = cos ( x ) + i sin ( x ) e^{ix} = \cos(x) + i \sin(x) we see that 2 i sin ( x ) = e i x e i x sin ( x ) = i 2 ( e i x e i x ) 2i \sin(x) = e^{ix} - e^{-ix} \Longrightarrow \sin(x) = -\dfrac{i}{2} (e^{ix} - e^{-ix}) . Thus

sin ( x ) e 2 i x d x = i 2 ( e i x e 3 i x ) d x = e i x 2 e 3 i x 6 + C \displaystyle \int \sin(x) e^{-2ix} dx = -\dfrac{i}{2} \int (e^{-ix} - e^{-3ix}) dx = \dfrac{e^{-ix}}{2} - \dfrac{e^{-3ix}}{6} + C ,

where the substitution method was used on the exponentials. Evaluating from 0 0 to π \pi then gives us an answer of

( e i π 2 e i 3 π 6 ) ( 1 2 1 6 ) = ( 1 2 + 1 6 ) 1 3 = 2 3 \left(\dfrac{e^{-i \pi}}{2} - \dfrac{e^{-i 3\pi}}{6}\right) - \left(\dfrac{1}{2} - \dfrac{1}{6}\right) = \left(-\dfrac{1}{2} + \dfrac{1}{6}\right) - \dfrac{1}{3} = \boxed{-\dfrac{2}{3}} .

Yes Sir, this was the method which I used..........!! +1

Aaghaz Mahajan - 2 years, 11 months ago
Poca Poca
Jul 3, 2018

Using integration by parts twice, we can derive the following general formula:

sin ( x ) e t x = e t x ( cos ( x ) + t sin ( x ) ) 1 + t 2 + C . \begin{aligned} \int{\sin(x)e^{-tx}}=\frac{-e^{-tx}(\cos(x)+t\sin(x))}{1+t^2} + C. \end{aligned}

Now, let t = 2 i t=2i and use the equation above to get (using Euler's formula ):

0 π sin ( x ) e 2 i x = e 2 i π ( cos ( π ) + 2 i sin ( π ) ) 1 + ( 2 i ) 2 + e 0 ( cos ( 0 ) + 2 i sin ( 0 ) ) 1 + ( 2 i ) 2 = ( cos ( 2 π ) + i sin ( 2 π ) ) ( cos ( π ) + 2 i sin ( π ) ) + cos ( 0 ) + 2 i sin ( 0 ) 1 + ( 2 i ) t 2 = ( 1 + i 0 ) ( 1 + 2 i 0 ) + 1 + 2 i 0 1 + ( 4 ) = 2 3 \begin{aligned} \int_{0}^{\pi}{\sin(x)e^{-2ix}}&=\frac{-e^{-2i\pi}(\cos(\pi)+2i\sin(\pi))}{1+(2i)^2} + \frac{-e^{0}(\cos(0)+2i\sin(0))}{1+(2i)^2} \\ &=\frac{-(\cos (2\pi) + i\sin(2\pi))(\cos(\pi)+2i\sin(\pi)) + \cos(0) + 2i\sin(0)}{1+(2i)t^2}\\ &=\frac{-(1 + i\cdot 0)(-1+2i\cdot 0) + 1 + 2i\cdot 0}{1+(-4)}\\ &=\boxed{-\frac{2}{3}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...