Find the value of ∫ 0 π sin ( x ) e − 2 i x d x .
Notation: i = − 1 denotes the imaginary unit .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using Euler's formula e i x = cos ( x ) + i sin ( x ) we see that 2 i sin ( x ) = e i x − e − i x ⟹ sin ( x ) = − 2 i ( e i x − e − i x ) . Thus
∫ sin ( x ) e − 2 i x d x = − 2 i ∫ ( e − i x − e − 3 i x ) d x = 2 e − i x − 6 e − 3 i x + C ,
where the substitution method was used on the exponentials. Evaluating from 0 to π then gives us an answer of
( 2 e − i π − 6 e − i 3 π ) − ( 2 1 − 6 1 ) = ( − 2 1 + 6 1 ) − 3 1 = − 3 2 .
Yes Sir, this was the method which I used..........!! +1
Using integration by parts twice, we can derive the following general formula:
∫ sin ( x ) e − t x = 1 + t 2 − e − t x ( cos ( x ) + t sin ( x ) ) + C .
Now, let t = 2 i and use the equation above to get (using Euler's formula ):
∫ 0 π sin ( x ) e − 2 i x = 1 + ( 2 i ) 2 − e − 2 i π ( cos ( π ) + 2 i sin ( π ) ) + 1 + ( 2 i ) 2 − e 0 ( cos ( 0 ) + 2 i sin ( 0 ) ) = 1 + ( 2 i ) t 2 − ( cos ( 2 π ) + i sin ( 2 π ) ) ( cos ( π ) + 2 i sin ( π ) ) + cos ( 0 ) + 2 i sin ( 0 ) = 1 + ( − 4 ) − ( 1 + i ⋅ 0 ) ( − 1 + 2 i ⋅ 0 ) + 1 + 2 i ⋅ 0 = − 3 2
Problem Loading...
Note Loading...
Set Loading...
Relevant wiki: Euler's Formula
I = ∫ 0 π e − 2 i x sin x d x = ∫ 0 π e − 2 i x ( 2 i e i x − e − i x ) d x = 2 i 1 ∫ 0 π ( e − i x − e − 3 i x ) d x = 2 i 1 [ 3 i e − 3 i x − i e − i x ] 0 π = 2 i 1 [ 3 i − 2 − i − 2 ] = − 3 2 By Euler’s formula: e i θ = cos θ + i sin θ By Euler’s formula