A Literally Complex Integral

Calculus Level 4

i 3 a e π 2 x i x 2 d x = 4 π i^3\int^{\infty}_a{\frac{e^{\frac{\pi}{2x}i}}{x^2}dx} = \dfrac{4}{\pi} What is the largest possible value of a a for which the equation above holds?


The answer is 0.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 25, 2018

Note that d d x e π i 2 x = π i 2 x 2 e π i 2 x \dfrac d{dx} e^{\frac {\pi i}{2x}} = - \frac {\pi i}{2x^2} e^{\frac {\pi i}{2x}} . Therefore,

I = i 3 a e π i 2 x x 2 d x = i 3 2 π i e π i 2 x a By Euler’s formula: e θ i = cos θ + i sin θ = 2 π [ cos π 2 x + i sin π 2 x ] a = 2 π [ cos 0 + i sin 0 cos π 2 a i sin π 2 a ] = 2 π [ 1 cos π 2 a i sin π 2 a ] \begin{aligned} I & = i^3 \int_a^\infty \frac {e^{\frac {\pi i}{2x}}}{x^2} dx \\ & = i^3 \cdot \frac 2{-\pi i} {\color{#3D99F6}e^{\frac {\pi i}{2x}}} \ \bigg|_a^\infty & \small \color{#3D99F6} \text{By Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta \\ & = \frac 2\pi \left[\cos \frac \pi{2x} + i \sin \frac \pi{2x} \right]_a^\infty \\ & = \frac 2\pi \left[\cos 0 + i \sin 0 - \cos \frac \pi{2a} - i \sin \frac \pi{2a}\right] \\ & = \frac 2\pi \left[1 - \cos \frac \pi{2a} - i \sin \frac \pi{2a}\right] \end{aligned}

For I = 4 π cos π 2 a = 1 I = \dfrac 4\pi \implies \cos \dfrac \pi {2a} = -1 and sin π 2 a = 0 \sin \dfrac \pi{2a} = 0 , a = ± 1 2 \implies a = \pm \dfrac 12 therefore, the largest a = 1 2 = 0.5 a= \dfrac 12 = \boxed{0.5} .

Great solution, but note that the solution set for a a is an infinite set: a = 1 2 ( 2 n + 1 ) , n Z \displaystyle a = \dfrac{1}{2 \left( 2n+1 \right)}, n \in \mathbb{Z} , (the set of reciprocals of odd integer multiples of 2 2 ), giving the maximum value of a a when n = 0 n = 0 .

Akeel Howell - 3 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...