Complex integration?

Calculus Level 5

0 1 ln ( 1 e x ) d x \large \int_0^1 \ln(1-e^x) \, dx

If we consider the branch of the complex logarithm to be ln ( x ) = ln x + i π \ln(-x) = \ln x + i \pi , then the complex integral above is equal to Li a ( e b ) + c d + f i π ζ ( g ) , \text{Li}_a (e^{-b}) + \dfrac cd + f \cdot i\pi - \zeta (g), where a , b , c , d , f , g a,b,c,d,f,g are positive integers with c , d c,d coprime, find a + b + c + d + f + g a+b+c+d+f+g .

Notations :

  • Li n ( a ) { \text{Li} }_{ n }(a) denotes the polylogarithm function, Li n ( a ) = k = 1 a k k n . { \text{Li} }_{ n }(a)=\displaystyle\sum _{ k=1 }^{ \infty }{ \frac { { a }^{ k } }{ { k }^{ n } } }. "

  • i = 1 i = \sqrt{-1} .

  • ζ ( ) \zeta(\cdot) denotes the Riemann zeta function .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Apr 21, 2016

Assuming that we are working with a suitable branch of the logarithm such that log ( x ) = ln x + i π \log(-x) = \ln x + i\pi for x > 0 x > 0 , we have 0 1 log ( 1 e x ) d x = 0 1 [ ln ( e x 1 ) + i π ] d x = 0 1 [ x + ln ( 1 e x ) ] d x + i π = 1 2 0 1 n = 1 1 n e n x d x + i π = 1 2 n = 1 1 n 2 [ 1 e n ] + i π = 1 2 ζ ( 2 ) + L i 2 ( e 1 ) + i π \begin{array}{rcl} \displaystyle \int_0^1 \log(1-e^x)\,dx & = & \displaystyle \int_0^1 \big[\ln (e^x - 1) + i\pi\big]\,dx \; = \; \int_0^1 \big[x + \ln(1 - e^{-x})\big]\,dx + i\pi \\ & = & \displaystyle \tfrac12 - \int_0^1 \sum_{n=1}^\infty \frac{1}{n} e^{-nx}\,dx + i\pi \; =\; \tfrac12 - \sum_{n=1}^\infty \frac{1}{n^2}\big[1 - e^{-n}\big] + i\pi \\ & = & \displaystyle \tfrac12 - \zeta(2) + \mathrm{Li}_2(e^{-1}) + i\pi \end{array} making the answer 2 + 1 + 1 + 2 + 1 + 2 = 9 2+1+1+2+1+2 = \boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...