Complex limit

Calculus Level 3

lim t 1 t 0 ln t cos ( i x ) d x = a b \large \lim_{t\to\infty} \dfrac1t \int_0^{\ln t} \cos(i x) \, dx = \dfrac ab

If b b is a prime number, find a + b a+b .


Clarification: i = 1 i=\sqrt{-1} denotes the imaginary unit .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akeel Howell
Mar 17, 2017

If we work cos ( i x ) \cos{(ix)} algebraically, we obtain

cos ( i x ) = e i ( i x ) + e i ( i x ) 2 = e x + e x 2 = cosh ( x ) \cos{(ix)} =\ \large\dfrac{e^{i(ix)}+e^{-i(ix)}}{2} \\ = \dfrac{e^{x}+e^{-x}}{2} = \cosh{(x)}

So the limit becomes lim t 1 t 0 ln t cosh ( x ) d x = lim t 1 t sinh ( x ) 0 ln t = lim t e ln t e ln t 2 t = lim t t 1 / t 2 t = 1 2 a + b = 3 \displaystyle\lim_{t \to \infty}{\dfrac{1}{t}\int_{0}^{\ln{t}}{\cosh{(x)}} dx} \\ = \displaystyle\lim_{t \to \infty}{\dfrac{1}{t}\sinh{(x)}\LARGE{|}_{\small{0}}^{\small{\ln{t}}}} = \lim_{t \to \infty}{\dfrac{e^{\ln{t}}-e^{-\ln{t}}}{2t}} \\ = \displaystyle \lim_{t \to \infty}\dfrac{t-1/t}{2t} = \dfrac{1}{2} \implies a+b = \boxed{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...