Complex Log?

Algebra Level 4

ln z = ln 85 + i ( arctan 7 6 + π ) \large \ln z = \ln{\sqrt{85}}+i{\left(\arctan{\dfrac{7}{6}}+\pi\right)} If z z is a complex number of the form A + B i A+Bi , where i = 1 i = \sqrt{-1} , and A , B A,B are real numbers, find the solution z z to the equation above. Enter your answer as A + B A+B .


The answer is -13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Guilherme Niedu
Dec 23, 2016

l n ( z ) = l n ( 85 ) + i a t a n ( 7 6 ) + i π ln(z) = ln(\sqrt{85}) + i \cdot atan(\frac76) + i\cdot\pi

z = e l n ( 85 ) e i a t a n ( 7 6 ) e i π z = e^{ln(\sqrt{85})} \cdot e^{i \cdot atan(\frac76)} \cdot e^{i\cdot \pi}

z = 85 ( c o s ( a t a n ( 7 6 ) ) + i s i n ( a t a n ( 7 6 ) ) ) 1 z = \sqrt{85} \cdot (cos(atan(\frac76)) + i\cdot sin(atan(\frac76)) ) \cdot -1

z = 85 ( 6 85 + i 7 85 ) z = -\sqrt{85} \cdot (\frac{6}{\sqrt{85}} + i\cdot \frac{7}{\sqrt{85}} )

z = 6 7 i z = -6 - 7i

A = 6 , B = 7 , A+B = -13 \color{#3D99F6} A = -6, B = -7, \fbox{A+B = -13}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...