Complex Logarithm

Algebra Level 4

ln ( 3 + 4 i ) = A + B i \large{\ln(3+4i) = A +Bi}

A A and B B are real numbers satisfying the equation above. Find the minimum value of A 2 + B 2 A^2 + B^2 to 2 decimal places.

Notations:

  • i = 1 i = \sqrt{-1} denotes the imaginary unit .
  • ln ( ) \ln (\cdot) denotes the natural logarithm .


The answer is 3.45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 18, 2016

Relevant wiki: Euler's Formula

ln ( 3 + 4 i ) = ln ( 5 ( 3 5 + 4 5 i ) ) By Euler’s formula = ln ( 5 e i tan 1 4 3 ) = ln 5 + i tan 1 4 3 \begin{aligned} \ln(3+4i) & = \ln \left(5 \color{#3D99F6}{\left(\frac 35 + \frac 45i\right)} \right) & \small \color{#3D99F6}{\text{By Euler's formula}} \\ & = \ln \left(5 \color{#3D99F6}{e^{i \tan^{-1} \frac 43}} \right) \\ & = \ln 5 + i \tan^{-1} \frac 43 \end{aligned}

A 2 + B 2 = ( ln 5 ) 2 + ( tan 1 4 3 ) 2 3.45 \implies A^2 + B^2 = (\ln 5)^2 + \left(\tan^{-1} \frac 43\right)^2 \approx \boxed{3.45}

ln ( 3 + 4 i ) = A + B i e ln ( 3 + 4 i ) = e A + B i 3 + 4 i = e A e i B = e A ( cos ( B ) + i sin ( B ) ) \ln(3 + 4i) = A + Bi \Longrightarrow e^{\ln(3 + 4i)} = e^{A + Bi} \Longrightarrow 3 + 4i = e^{A}e^{iB} = e^{A}(\cos(B) + i\sin(B)) .

Equating respective real and imaginary coefficients gives us that 3 = e A cos ( B ) 3 = e^{A}\cos(B) and 4 = e A sin ( B ) 4 = e^{A}\sin(B) , and so

3 2 + 4 2 = e 2 A ( cos 2 ( B ) + sin 2 ( B ) ) 5 2 = e 2 A 2 ln ( 5 ) = 2 A A = ln ( 5 ) 3^{2} + 4^{2} = e^{2A}(\cos^{2}(B) + \sin^{2}(B)) \Longrightarrow 5^{2} = e^{2A} \Longrightarrow 2\ln(5) = 2A \Longrightarrow A = \ln(5) .

Thus 3 = e A cos ( B ) = 5 cos ( B ) B = cos 1 ( 3 5 ) 3 = e^{A}\cos(B) = 5\cos(B) \Longrightarrow B = \cos^{-1}\left(\dfrac{3}{5}\right) , and so

A 2 + B 2 = ( ln ( 5 ) ) 2 + ( cos 1 ( 3 5 ) ) 2 = 3.45 A^{2} + B^{2} = (\ln(5))^{2} + \left(\cos^{-1}\left(\dfrac{3}{5}\right)\right)^{2} = \boxed{3.45} to 2 decimal places.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...