Complex Mania-II

Algebra Level 2

( 1 i 1 + i ) 100 \left(\dfrac{1-i}{1+i}\right)^{100}
If the expression above equals a + i b a+ib for real numbers a a and b b ,then find the value of a + b a+b .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Raj Rajput
Aug 11, 2015

Moderator note:

That's right. Another way is to express 1 ± i = 2 ( 1 2 ± i 2 ) 1 \pm i = \sqrt2 \left(\frac1{\sqrt2} \pm \frac i{\sqrt 2} \right) to polar coordinates then apply De Moivre's Theorem.

Bonus question : What would the answer be if we replace the number 100 by 99 instead?

1 i 1 + i = ( 1 i ) ( 1 i ) ( 1 + i ) ( 1 i ) = 1 2 i + i 2 1 i 2 = 2 i 2 = i ( i ) 99 = ( 1 ) i 3 = i a + b = 1 \small \frac{1-i}{1+i}=\frac{(1-i)(1-i)}{(1+i)(1-i)}=\frac{1-2i+i^2}{1-i^2}=\frac{-2i}{2}=-i \Rightarrow (-i)^{99}=(-1)i^{3}=i \Rightarrow a+b=1

In fact the possible values of a + b = { 1 , 1 } a+b=\{-1,1\} . Because ( i ) n = { i , 1 , i , 1 } (-i)^n=\{-i,-1,i,1\} congruence mod 4.

Cleres Cupertino - 5 years, 10 months ago
Siddharth Singh
Aug 11, 2015

1 i 1 + i = ( 1 i ) ( 1 i ) ( 1 + i ) ( 1 i ) = 1 + i 2 2 i 1 i 2 \frac{1-i}{1+i}=\frac{(1-i)(1-i)}{(1+i)(1-i)}=\frac{1+i^{2}-2i}{1-i^{2}}

= 1 1 2 i 1 + 1 = i \frac{1-1-2i}{1+1}=-i

( i ) 100 = 1 (-i)^{100}=1 (even power of any -ve number is +ve))

1 can be written as 1 + i 0 1+i0 where a + b = 1 + 0 = 1 a+b=1+0=\boxed{1}

It'll be -2i instead of +2i. And hence the result will be -i. But yet it'll give the final result 1.

Subhag Gupta - 5 years, 10 months ago

There's a mistake Siddharth Singh You wrote i 100 = 1 -i^{100}=1 .That is incorrect.Because: ( a ) 2 n = a 2 n BUT a 2 n = 1 × a 2 n (-a)^{2n}=a^{2n}\\ \textbf{BUT} -a^{2n}=-1\times a^{2n} See what I'm talking about? You see, i 100 1 -i^{100}\neq 1 because i 100 = 1 × i 100 = 1 × 1 = 1 -i^{100}=-1\times i^{100}=-1 \times 1=\boxed{-1} . I 've corrected it.So, no need to worry.

Abdur Rehman Zahid - 5 years, 9 months ago

Log in to reply

Good observation Sir.

Swapnil Das - 5 years, 9 months ago

First learn and then teach Siddharth Singh

nalini nema - 5 years, 10 months ago
汶良 林
Aug 26, 2015

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...