Complex number #1

Calculus Level 5

k = 0 ( 2018 4 k + 1 ) \displaystyle \sum^{\infty}_{k=0}\binom{2018}{4k+1}

If the value of the above sum is in the form 2 a ( 2 a + 1 ) 2^{a}(2^{a}+1) , then find a a .


Inspiration


The answer is 1008.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 16, 2018

Note that k = 0 ( n k ) = k = 0 n ( n k ) \displaystyle \sum_{k=0}^{\color{#3D99F6}\infty} \binom nk = \sum_{k=0}^{\color{#D61F06}n} \binom nk , since ( n k ) = 0 \displaystyle \binom nk = 0 for k > n k>n . By binomial theorem , we have ( 1 + x ) n = k = 0 n ( n k ) x k \displaystyle (1+x)^n = \sum_{k=0}^n \binom nk x^k , therefore:

( 1 + x ) n = 1 + ( n 1 ) x + ( n 2 ) x 2 + ( n 3 ) x 3 + ( n 4 ) x 4 + ( n 5 ) x 5 + + ( n n ) x n ( 1 + x ) n 1 x = ( n 1 ) + ( n 2 ) x + ( n 3 ) x 2 + ( n 4 ) x 3 + ( n 5 ) x 4 + + ( n n ) x n 1 ( 1 + 1 ) n 1 1 = ( n 1 ) ( 1 ) + ( n 2 ) ( 1 ) + ( n 3 ) ( 1 ) + ( n 4 ) ( 1 ) + ( n 5 ) ( 1 ) + + ( n n ) ( 1 ) ( 1 + i ) n 1 i = ( n 1 ) ( 1 ) + ( n 2 ) ( i ) + ( n 3 ) ( 1 ) + ( n 4 ) ( i ) + ( n 5 ) ( 1 ) + + ( n n ) ( i ) ( 1 1 ) n 1 1 = ( n 1 ) ( 1 ) + ( n 2 ) ( 1 ) + ( n 3 ) ( 1 ) + ( n 4 ) ( 1 ) + ( n 5 ) ( 1 ) + + ( n n ) ( 1 ) ( 1 i ) n 1 i = ( n 1 ) ( 1 ) + ( n 2 ) ( i ) + ( n 3 ) ( 1 ) + ( n 4 ) ( i ) + ( n 5 ) ( 1 ) + + ( n n ) ( i ) \begin{aligned} (1+x)^n & = 1 + \binom n1 x + \binom n2 x^2 + \binom n3 x^3 + \binom n4 x^4 + \binom n5 x^5+ \cdots + \binom nn x^n \\ \frac {(1+x)^n -1}x & = \binom n1 + \binom n2 x + \binom n3 x^2 + \binom n4 x^3 + \binom n5 x^4+ \cdots + \binom nn x^{n-1} \\ \frac {(1+{\color{#3D99F6}1})^n -1}{\color{#3D99F6}1} & = \binom n1{\color{#3D99F6}(1)} + \binom n2{\color{#3D99F6}(1)} + \binom n3{\color{#3D99F6}(1)} + \binom n4{\color{#3D99F6}(1)} + \binom n5 {\color{#3D99F6}(1)} + \cdots + \binom nn {\color{#3D99F6}(1)} \\ \frac {(1+{\color{#3D99F6}i})^n -1}{\color{#3D99F6}i} & = \binom n1{\color{#3D99F6}(1)} + \binom n2{\color{#3D99F6}(i)} + \binom n3{\color{#3D99F6}(-1)} + \binom n4{\color{#3D99F6}(-i)} + \binom n5 {\color{#3D99F6}(1)} + \cdots + \binom nn {\color{#3D99F6}(i)} \\ \frac {(1\ {\color{#3D99F6}-1})^n -1}{\color{#3D99F6}-1} & = \binom n1{\color{#3D99F6}(1)} + \binom n2{\color{#3D99F6}(-1)} + \binom n3{\color{#3D99F6}(1)} + \binom n4{\color{#3D99F6}(-1)} + \binom n5 {\color{#3D99F6}(1)} + \cdots + \binom nn {\color{#3D99F6}(-1)} \\ \frac {(1\ {\color{#3D99F6}-i})^n -1}{\color{#3D99F6}-i} & = \binom n1{\color{#3D99F6}(1)} + \binom n2{\color{#3D99F6}(-i)} + \binom n3{\color{#3D99F6}(-1)} + \binom n4{\color{#3D99F6}(i)} + \binom n5 {\color{#3D99F6}(1)} + \cdots + \binom nn {\color{#3D99F6}(-i)} \end{aligned}

This implies that:

( 1 + 1 ) n 1 1 + ( 1 + i ) n 1 i + ( 1 1 ) n 1 1 + ( 1 i ) n 1 i = 4 ( n 1 ) + 4 ( n 5 ) + 4 ( n 9 ) + 4 ( n 13 ) + + 4 ( n n 1 ) Put n = 2018 \begin{aligned} \frac {(1+1)^n -1}1 + \frac {(1+i)^n -1}i + \frac {(1-1)^n -1}{-1} + \frac {(1-i)^n -1}{-i} & = 4 \binom n1 + 4 \binom n5 + 4 \binom n9 + 4 \binom n{13} + \cdots + 4 \binom n{n-1} & \small \color{#3D99F6} \text{Put }n=2018 \end{aligned}

k = 1 ( 2018 4 k + 1 ) = 2 2018 1 i ( 1 + i ) 2018 + i 0 + 1 + i ( 1 i ) 2018 i 4 Note that ( 1 + i ) 2 = 2 i , ( 1 i ) 2 = 2 i = 2 2018 i ( 2 i ) 1009 + i ( 2 i ) 1009 4 = 2 2018 2 1009 i 1010 2 1009 i 1010 4 Note that i 4 = 1 , i 2 = 1 = 2 2018 + 2 1009 + 2 1009 4 = 2 2018 + 2 1010 4 = 2 2016 + 2 1008 = 2 1008 ( 2 1008 + 2 ) \begin{aligned} \implies \sum_{k=1}^\infty \binom {2018}{4k+1} & = \frac {2^{2018} - 1 -i(1+i)^{2018} + i - 0 + 1 + i(1-i)^{2018} - i}4 & \small \color{#3D99F6} \text{Note that }(1+i)^2 = 2i, \ (1-i)^2 = -2i \\ & = \frac {2^{2018} - i(2i)^{1009} + i(-2i)^{1009}}4 \\ & = \frac {2^{2018} - 2^{1009}i^{1010} - 2^{1009}i^{1010}}4 & \small \color{#3D99F6} \text{Note that }i^4 = 1, i^2 = -1 \\ & = \frac {2^{2018} + 2^{1009} + 2^{1009}}4 \\ & = \frac {2^{2018} + 2^{1010}}4 \\ & = 2^{2016} + 2^{1008} \\ & = 2^{1008}\left(2^{1008}+2\right) \end{aligned}

Therefore, a = 1008 a = \boxed{1008} .

Alan Yan
Jan 14, 2018

Consider f ( x ) = x 3 ( 1 + x ) 2018 f(x) = x^3 (1 + x)^{2018} . Then our answer is f ( 1 ) + f ( i ) + f ( i ) + f ( 1 ) 4 = 2 1008 ( 2 1008 + 1 ) . \frac{f(1) + f(i) + f(-i) + f(-1)}{4} = 2^{1008}(2^{1008} + 1) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...