Complex number 4

Algebra Level 2

{ 56 x + 33 y = y x 2 + y 2 33 x 56 y = x x 2 + y 2 \large\begin{cases} {56x +33y = -\frac y{x^2+y^2} } \\ {33x -56y = \frac x{x^2+y^2} } \end{cases}

Given that x , y x,y are complex numbers that satisfy the system of equations above and that x + y |x| + |y| equals p q \frac pq for coprime positive integers p , q p,q , evaluate 6 p q 6p-q .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let's solve that system only for x x by keeping fixed y x 2 + y 2 -\dfrac{y}{x^2+y^2} and x x 2 + y 2 \dfrac{x}{x^2+y^2} :

x = 33 x 56 y 4225 ( x 2 + y 2 ) x=\dfrac{33x-56y}{4225(x^2+y^2)}

Now, take the second equation and substitute it:

x = x x 2 + y 2 4225 ( x 2 + y 2 ) x=\dfrac{\dfrac{x}{x^2+y^2}}{4225(x^2+y^2)}

Since x 0 x \neq 0 :

4225 ( x 2 + y 2 ) 2 = 1 x 2 + y 2 = ± 1 65 4225(x^2+y^2)^2=1 \\ x^2+y^2= \pm \dfrac{1}{65}

Now, substitute in the first equation we obtained:

x = 33 x 56 y ± 65 ± 65 x = 33 x 56 y x ( 33 65 ) = 56 y x = 56 33 65 y x=\dfrac{33x-56y}{\pm 65} \\ \pm 65x=33x-56y \\ x(33\mp 65)=56y \\ x=\dfrac{56}{33\mp 65}y

First consider the first choice of sign, so we obtain:

x = 7 4 y x=-\dfrac{7}{4}y

Substitute in x 2 + y 2 = 1 65 x^2+y^2=\dfrac{1}{65} :

49 16 y 2 + y 2 = 1 65 y = ± 4 65 x = 7 65 \dfrac{49}{16}y^2+y^2=\dfrac{1}{65} \\ y=\pm\dfrac{4}{65} \\ x=\mp \dfrac{7}{65}

In this case we obtain the solutions: ( x , y ) = ( 7 65 , ± 4 65 ) (x,y)=\left(\mp \dfrac{7}{65},\pm\dfrac{4}{65}\right)

Finally, consider the second choice of sign:

x = 4 7 y x=\dfrac{4}{7}y

Substitute in x 2 + y 2 = 1 65 x^2+y^2=-\dfrac{1}{65} :

16 49 y 2 + y 2 = 1 65 y = ± 7 65 i x = ± 4 65 i \dfrac{16}{49}y^2+y^2=-\dfrac{1}{65} \\ y=\pm \dfrac{7}{65}i \\ x=\pm \dfrac{4}{65}i

In this case we obtain the solutions: ( x , y ) = ( ± 4 65 i , ± 7 65 i ) (x,y)=\left(\pm \dfrac{4}{65}i,\pm\dfrac{7}{65}i\right)

In both cases, we have that x + y = 4 65 + 7 65 = 11 65 |x|+|y|=\dfrac{4}{65}+\dfrac{7}{65}=\dfrac{11}{65} , so p = 11 p=11 , q = 65 q=65 and 6 p q = 1 6p-q=\boxed{1} .

Ravi Dwivedi
Jul 9, 2015

Let z = x + i y , w h e r e i = 1 z=x+iy,where \quad i=\sqrt{-1}

We can write the given system as z ( 33 + 56 i ) = z ˉ z 2 z ( 33 + 56 i ) = 1 z z(33+56i)=\frac {\bar{z}}{|z|^2} \implies z(33+56i)=\frac{1}{z} (Using z z ˉ = z 2 z\bar{z}=|z|^2 )

z 2 ( 33 + 56 i ) = 1 \implies z^2(33+56i)=1

z 2 = 1 33 + 56 i \implies z^2=\frac{1}{33+56i}

z 2 = 33 56 i 3 3 2 + 5 6 2 \implies z^2=\frac{33-56i}{33^2+56^2}

z 2 = 33 56 i 6 5 2 \implies z^2=\frac{33-56i}{65^2}

Comparing imaginary and real parts of z 2 z^2

{ x 2 y 2 = 33 6 5 2 2 x y = 56 6 5 2 \implies \begin{cases} x^2-y^2=\frac{33}{65^2} \\ 2xy=\frac{-56}{65^2} \end{cases}

Eliminating x x we get

4 y 2 ( 33 6 5 2 + y 2 ) = 5 6 2 6 5 4 4 y 4 + 4 y 2 33 6 5 2 5 6 2 6 5 4 = 0 y 4 + y 2 33 6 5 2 5 6 2 4 6 5 4 = 0 ( y 2 + 33 2 6 5 2 ) 2 = 1 4 6 5 2 ( y 2 + 33 2 6 5 2 ) = 1 2 × 65 y 2 = 32 2 6 5 2 y = 4 65 x = 7 65 \quad 4y^2(\frac{33}{65^2}+y^2)=\frac{56^2}{65^4}\\ \implies 4y^4+4y^2 \frac{33}{65^2}-\frac{56^2}{65^4}=0\\ \implies y^4+y^2\frac{33}{65^2}-\frac{56^2}{4 \cdot 65^4}=0\\ \implies(y^2+\frac{33}{2 \cdot 65^2})^2=\frac{1}{4 \cdot 65^2}\\ \implies (y^2+\frac{33}{2 \cdot 65^2})=\frac{1}{2 \times 65}\\ \implies y^2=\frac{32}{2 \cdot 65^2}\\ \implies |y|=\frac{4}{65} \quad |x|=\frac{7}{65}

x + y = 11 65 p = 11 q = 65 6 p q = 1 |x|+|y|=\frac{11}{65} \\ \boxed{p=11} \quad \boxed{q=65}\\ \boxed{6p-q=1}

Zico Quintina
Mar 22, 2018

We square both equations in the given system to obtain

5 6 2 x 2 + ( 2 × 56 × 33 ) x y + 3 3 2 y 2 = y 2 ( x 2 + y 2 ) 2 3 3 2 x 2 ( 2 × 33 × 56 ) x y + 5 6 2 y 2 = x 2 ( x 2 + y 2 ) 2 \begin{aligned} 56^2x^2 + (2\times56\times33)\,xy + 33^2y^2 &= \dfrac{y^2}{(x^2+y^2)^2}\\ 33^2x^2 - (2\times33\times56)\,xy + 56^2y^2 &= \dfrac{x^2}{(x^2+y^2)^2} \end{aligned}

Adding these two resulting equations, we get

( 5 6 2 + 3 3 2 ) ( x 2 + y 2 ) = x 2 + y 2 ( x 2 + y 2 ) 2 6 5 2 ( x 2 + y 2 ) = 1 x 2 + y 2 x 2 + y 2 = ± 1 65 \begin{aligned} (56^2+33^2) (x^2+y^2) &= \dfrac{x^2+y^2}{(x^2+y^2)^2}\\ 65^2(x^2+y^2) &= \dfrac{1}{x^2+y^2}\\ x^2+y^2 &= \pm \dfrac{1}{65} \end{aligned}

Combining the last line with the original system leads to the pair of systems

56 x + 33 y = 65 y 33 x 56 y = ± 65 x \begin{aligned} 56x + 33y &= \mp 65y\\ 33x - 56y &= \pm 65x \end{aligned}

Unfortunately neither of these two systems is independent; solving them leads to 4 x = 7 y 4x = -7y and 7 x = 4 y 7x = 4y respectively. However, squaring these equations and then combining them with the earlier obtained x 2 + y 2 = 1 65 x^2+y^2 = \dfrac{1}{65} and x 2 + y 2 = 1 65 x^2+y^2 = -\dfrac{1}{65} respectively yields results.

First,

16 x 2 = 49 y 2 x 2 + y 2 = 1 65 \begin{aligned} 16x^2 &= 49 y^2\\ x^2 + y^2 &= \dfrac{1}{65} \end{aligned}

leads to x 2 = 49 6 5 2 and y 2 = 16 6 5 2 , so x = 7 65 and y = 4 65 . x^2 = \dfrac{49}{65^2} \text{ and } y^2 = \dfrac{16}{65^2} \text{, so } |x| = \dfrac{7}{65} \text{ and } |y| = \dfrac{4}{65}.

Second,

49 x 2 = 16 y 2 x 2 + y 2 = 1 65 \begin{aligned} 49x^2 &= 16 y^2\\ x^2 + y^2 &= -\dfrac{1}{65} \end{aligned}

leads to x 2 = 16 6 5 2 and y 2 = 49 6 5 2 , so x = 4 65 and y = 7 65 . x^2 = -\dfrac{16}{65^2} \text{ and } y^2 = -\dfrac{49}{65^2} \text{, so } |x| = \dfrac{4}{65} \text{ and } |y| = \dfrac{7}{65}.

In both cases, we get x + y = 11 65 , so p = 11 and q = 65 , thus 6 p q = 1 |x| + |y| = \dfrac{11}{65}\text{, so } p=11 \text{ and } q=65 \text{, thus } 6p-q= \boxed{1} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...