Perplexed Number

Algebra Level 2

Can you evaluate this giant power of i i ?

i 9999 \huge i^{-9999}

1 -1 i i 1 1 i -i

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Arulx Z
Jun 25, 2015

We have i 9999 = 1 i 9999 = 1 i 4 2499 + 3 = 1 i 4 2499 i 3 . { i }^{ -9999 }=\frac { 1 }{ { i }^{ 9999 } } =\frac { 1 }{ { i }^{ 4\cdot 2499+3 } } =\frac { 1 }{ { i }^{ 4\cdot 2499 }\cdot { i }^{ 3 } } .

Since i 4 = 1 { i }^{ 4 }=1 , the equation can be simplified as

1 i 3 = 1 i = ( 1 i ) = ( i ) = i . \frac { 1 }{ { i }^{ 3 } } =\frac { 1 }{ -i } =-\left( \frac { 1 }{ i } \right) =-\left( -i \right) =i .\square

Moderator note:

Simple standard approach.

i 9999 = 1 i 9999 = 1 i 2 4999 + 1 = 1 ( i 2 ) 4999 i = 1 ( 1 ) 4999 i = 1 ( 1 ) i = 1 i = i 2 i = i i^{-9999} = \frac{1}{i^{9999}} = \frac{1}{i^{2\cdot 4999 + 1}} = \frac{1}{ (i^{2} ) ^{4999} \cdot i} = \frac{1}{ (-1)^{4999} \cdot i} = \frac{1}{ (-1) \cdot i} = -\frac{1}{i} = \frac{i^{2}}{i} = \boxed{i}

Patrick Engelmann - 5 years, 11 months ago

Log in to reply

Correct! I used an identity instead of rationalizing the expression.

Arulx Z - 5 years, 11 months ago
Kyle Coughlin
Jun 28, 2015

i 9999 = i 9999 1 2500 = i 9999 ( i 4 ) 2500 = i 9999 + 10000 = i i^{-9999} = i^{-9999} * 1^{2500} = i^{-9999} * (i^4)^{2500} = i^{-9999 + 10000} = i

i 9999 = 1 i 9999 = i i 10000 = i i^{-9999} = \frac{1}{i^{9999}} = \frac {i}{i^{10000}} = i

Dan Swearingen
Jul 5, 2015

i^4 = 1, so i ^10000 = 1. i^(-9999) = i^(-9999)*i^10000 = i^1 = i.

Joe Potillor
Nov 14, 2016

i 9999 = i 9999 + 10000 = i . \large i^{-9999}=i^{-9999+10000}=i. Adding or subtracting any multiple of four does not change the value. So, add or subtract to/from the exponent, such a number that the result is 0, 1, 2, or 3 and we get the answer. OR F o r i n f i n d n x ( m o d 4 ) , i n = i x For~~i^n ~find~n\equiv ~x~ (mod~4), i^n=i^x if you know mods.

Juan Cruz Roldán
Jan 13, 2021

Consider 9999 3 ( m o d 4 ) -9999 \equiv -3 \ (mod \ 4) Which is no other than 1

Jeffrey H.
Apr 25, 2018

Note that the powers of i i cycle ever 4 4 powers. This means that the value of i i depends on the module 4 4 of the power, where module 0 0 is just 1 1 . So, we have that i 9999 = i 10000 i = 1 i = i i^{-9999}=i^{-10000}\cdot i=1\cdot i=\boxed{i}

Exponent Bot
Mar 26, 2018
  • Let 1 i \frac{1}{i} =x
  • Then, 1=x i i
  • i 4 i^4 =x i i
  • x= i 3 i^3
  • 1 i \frac{1}{i} = i 3 i^3
  • Therefore, 1 ( i 9999 ) \frac{1}{(i^-9999)} = i i

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...