Complex number

Algebra Level 2

If x 2 = 1 + 1 , \color{#D61F06}x\sqrt{2} = 1 + \sqrt{-1}, then

what is the value of x 4 + 2 ? \color{#D61F06}x^4 + 2?


Hints: i i is the imaginary number that satisfies i 2 = 1 i^2 = -1 .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Rearranging, x = 1 2 + i 1 2 = cos ( π 4 ) + i sin ( π 4 ) x = \dfrac {1}{\sqrt 2} + i \dfrac {1}{\sqrt 2} = \cos \begin{pmatrix} \dfrac π4 \end{pmatrix} + i \sin \begin{pmatrix} \dfrac π4 \end{pmatrix}

In Euler Notation, x = e i π 4 x = e^{i\frac π4}

Now, S = x 4 + 2 = ( e i π 4 ) 4 + 2 = e i π + 2 = ( cos ( π ) + i sin ( π ) ) + 2 = ( 1 + 0 ) + 2 S= x^4 + 2 = (e^{i\frac π4})^4 + 2 = e^{iπ} + 2 = (\cos (π) + i \sin (π)) + 2 = (-1 + 0 ) + 2

S = 1 S = \boxed{1}

Nazmus Sakib
Sep 19, 2017

Given that

x 2 = 1 + 1 , x\sqrt{2} = 1 + \sqrt{-1},

x = 1 + i 2 \Rightarrow x = \dfrac{1+i}{\sqrt2} ~~~~~~~~~~~~~~~~~~~~~~~ [ i = 1 ] \left[ i = \sqrt{-1}\right]

x 2 = 1 + 2.1. i + i 2 2 \Rightarrow x^2 = \dfrac{1+2.1.i+i^2}{2}

x 2 = 1 1 + 2 i 2 \Rightarrow x^2 = \dfrac{1 - 1 +2i}{2}

x 2 = i x^2 =i

Now,

x 4 + 2 x^4+2

= ( x 2 ) 2 + 2 =(x^2)^2+2

= ( i ) 2 + 2 =(i)^2+2

= 1 + 2 = -1+2

= 1 =1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...