Complex Numbers

Algebra Level 4

Given that complex numbers x , y x, y satisfy x 3 y 3 = 98 i x^3 - y^3 = 98i and x y = 7 i x - y = 7i .

If x y = a + i b xy = a + ib where a , b R a,b \in \mathbb R then find the value of a + b 3 \dfrac{a + b}{3} .

Notation : i = 1 i = \sqrt{-1} denotes the imaginary unit .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Oct 5, 2018

x 3 y 3 = 98 i \large \displaystyle x^3 - y^3 = 98i

( x y ) ( x 2 + x y + y 2 ) = 98 i \large \displaystyle \color{#3D99F6} (x-y) \color{#333333} (x^2 + xy + y^2) = 98i

7 i ( x 2 + x y + y 2 ) = 98 i \large \displaystyle \color{#3D99F6} 7i \color{#333333} (x^2 + xy + y^2) = 98i

x 2 + x y + y 2 = 14 \large \displaystyle x^2 + xy + y^2 = 14

( x y ) 2 + 3 x y = 14 \large \displaystyle \color{#3D99F6}(x-y)\color{#333333} ^2 + 3xy = 14

( 7 i ) 2 + 3 x y = 14 \large \displaystyle \color{#3D99F6}(7i)\color{#333333} ^2 + 3xy = 14

3 x y = 63 \large \displaystyle 3xy = 63

x y = 21 + 0 i \color{#20A900} \boxed{\large \displaystyle xy = 21 + 0i }

Then:

a = 21 , b = 0 , a + b 3 = 7 \large \displaystyle \color{#3D99F6} a = 21, b = 0, \boxed{\large \displaystyle \frac{a+b}{3} = 7 }

x 3 y 3 = 98 i ( x y ) ( x 2 + x y + y 2 ) = 98 i Given that x y = 7 i 7 i ( x 2 + x y + y 2 ) = 98 i Divide both sides by 7 i x 2 + x y + y 2 = 14 . . . ( 1 ) \begin{aligned} x^3-y^3 & = 98i \\ {\color{#3D99F6}(x-y)}(x^2+xy+y^2) & = 98i & \small \color{#3D99F6} \text{Given that }x-y=7i \\ {\color{#3D99F6}7i}(x^2+xy+y^2) & = 98i & \small \color{#3D99F6} \text{Divide both sides by }7i \\ x^2+xy+y^2 & = 14 & ...(1) \end{aligned}

From:

x y = 7 i Squaring both sides x 2 2 x y + y 2 = 49 . . . ( 2 ) \begin{aligned} x-y & = 7i & \small \color{#3D99F6} \text{Squaring both sides} \\ x^2 - 2xy + y^2 & = -49 & ...(2) \end{aligned}

Then, from ( 1 ) ( 2 ) : 3 x y = 63 (1)-(2): \quad 3xy = 63 , x y = 21 + i 0 \implies xy = 21 + i0 and a + b 3 = 21 + 0 3 = 7 \dfrac {a+b}3 = \dfrac {21+0}3 = \boxed 7 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...