Complex Numbers

Algebra Level 3

If z z ˉ + ( 3 i ) z + ( 3 + i ) z ˉ + 1 = 0 z\bar { z } +(3-i)z+(3+i)\bar { z } +1=0 represents a circle , then the coordinates of its center and its radius respectively are

( 3 , 1 ) , 4 (-3,1) , 4 ( 3 , 1 ) , 4 (-3,-1) , 4 ( 3 , 1 ) , 3 (-3,-1) , 3 ( 3 , 1 ) , 3 (-3,1) , 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let z = x + iy \Rightarrow z z ˉ + ( 3 i ) z + ( 3 + i ) z ˉ + 1 z\bar{z} + (3-i)z + (3+i)\bar{z} + 1 = 0 = x 2 + y 2 + 6 x + 2 y + 1 = ( x + 3 ) 2 + ( y + 1 ) 2 9 x^2 + y^2 + 6x + 2y + 1 = (x + 3)^{2} + (y + 1)^2 - 9 \Rightarrow ( x + 3 ) 2 + ( y + 1 ) 2 = 9 (x + 3)^{2} + (y + 1)^2 = 9 \Rightarrow This is an equation of a circle of radius 3 and centre (-3,-1) .

Note.- If a, b complex numbers then a b + a ˉ b ˉ = 2 R e ( a b ) ab + \bar{a}\bar{b} = 2Re(ab)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...