Complex Numbers #14

Algebra Level 3

Complex number z z is such that z 2 = z ˉ z^2 = \bar z . How many values of z z satisfy the equation.

Notation: z ˉ \bar z denotes the conjugate of complex number z z .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jan 27, 2018

z 2 = z ˉ Let z = x + y i ( x + y i ) 2 = x y i x 2 y 2 + 2 x y i = x y i \begin{aligned} z^2 & = \bar z & \small \color{#3D99F6} \text{Let } z = x+yi \\ (x+yi)^2 & = x-yi \\ x^2-y^2+2xyi & = x - yi \end{aligned}

Equating the real parts and imaginarys part of both sides,

{ x ( x 1 ) = y 2 . . . ( 1 ) y ( 2 x + 1 ) = 0 . . . ( 2 ) \begin{cases} x(x-1) = y^2 & ...(1) \\ y(2x+1) = 0 & ...(2) \end{cases}

From (2): { y = 0 ( 1 ) : x ( x 1 ) = 0 x = 0 , 1 z = x + y i = { 0 1 x = 1 2 ( 1 ) : y 2 = 1 2 ( 1 2 1 ) y = ± 3 2 z = x + y i = { 1 2 + 3 2 1 2 3 2 \begin{cases} y = 0 & \implies (1): \ x(x-1) = 0 \implies x = 0, \ 1 & \implies z = x +yi = \begin{cases} 0 \\ 1 \end{cases} \\ x = - \frac 12 & \implies (1): \ y^2 = - \frac 12\left(-\frac 12-1\right) \implies y = \pm \frac {\sqrt 3}2 & \implies z = x +yi = \begin{cases} - \frac 12 + \frac {\sqrt 3}2 \\ - \frac 12 - \frac {\sqrt 3}2 \end{cases} \end{cases}

Therefore, there are 4 \boxed{4} values of z z satisfying the equation.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...